doc - Baudrand

écricome 2003 option économique : corrigé rapide. exercice 1 ..... Donc 0 < ? < 1
, mais cela ne suffit pas, l'encadrement utilisable pour les questions qui vont ...

Part of the document


écricome 2003 option économique : corrigé rapide

exercice 1
1.1.1 ( est valeur propre de f ssi A ( (I n'est pas inversible. En
effectuant les opérations L1 ( L2, puis L2 ( L2 ( (3 ( ()L1, on obtient la
matrice
[pic]
((2 +3( ( 2 = 0 ( ( = 1 ou ( = 2 ; 2 ( ( = 0 ( ( = 2.
Les deux valeurs propres de f sont donc (1 = 1, (2 = 2.
2. A est inversible car 0 n'est pas valeur propre de A.
3. Pour (1 = 1, le sous espace propre associé à pour base (1, 1, 0), pour
dimension 1.
Pour (1 = 2, le sous espace propre associé à pour base (2, 1, 0), pour
dimension 1.
4. La somme des dimensions des sous-espaces propres de f n'est pas égale à
3, donc f n'est pas diagonalisable.
5. u1 = (1, 1, 0).
6. u2 = (2, 1, 0).
7. x u1 + yu2 + z u3 = 0 est équivalent assez rapidement à x = y = z = 0 ;
C est donc une famille libre de E, qui est de dimension 3. C est donc une
base de E.
8. Par définition de P,
[pic]
La matrice de passage de C à B est la matrice P(1 et la méthode du pivot
aboutit à
[pic]
9. f(u3) = (4, 3, 2), et u2 + 2u3 = (4, 3, 2) : OK.
10. f(u1) = u1, f(u2) = 2u2, f(u3) = u2 + 2u3, donc...
11. Théorie du changement de base : A = P T P(1.
12. Récurrence : la propriété à établir est vraie pour n = 1 avec ( = 1, et
si elle est vraie pour n fixé dans N, alors
[pic]
elle est vraie pour n +1, avec (n+1 = 2n + 2(n. D'où la conclusion.
13. Le premier résultat s'établit par récurrence : 1(21(1 = 1 = (1, et si
(n = n(2n(1 pour n fixé dans N*, alors (n+1 = 2n + 2 n 2n(1 = 2n + n 2n =
2n(n + 1).
Pour le deuxième, contentons-nous d'écrire : An = (PTP(1) (PTP(1) ...
(PTP(1) = P Tn P(1.
1.2.1. La matrice nulle O appartient à C(A) car AO = OA.
Soit M, M ' deux matrices de C(A) ; alors A(M + M ') = AM + AM' = MA + M'A
= (M + M ')A, donc M + M ' appartient à C(A).
Soit M appartenant à C(A) et x appartenant à R ; alors A(xM) = x(AM) =
x(MA) = (xM)A, donc xM appartient à C(A).
On en conclut que C(A) est un sous-espace vectoriel de M3(R).
2. M ' = P(1 M P, donc M = P M ' P(1 et AM = MA est équivalent
successivement à :
(P T P(1)(P M ' P(1) = (P M ' P(1)(P T P(1)
P T M ' P(1 = P M ' T P(1
T M ' = M ' T
3. T M ' = M ' T est équivalent à :
[pic]
Ce qui donne exactement les matrices de la forme annoncée.
4. M appartient à C(A) ssi M = P M ' P(1 avec M ' comme trouvée dans la
question précédente. Le calcul patient de ce produit de trois matrices
devrait donner le résultat escompté...
5. M appartient donc à C(A) ssi
[pic]
(M1, M2, M3) est donc une famille génératrice de C(A). Cette famille est
libre :
si aM1 + bM2 + cM3 = 0, alors (a + 2b = 0, (a + b = 0, (a + b + c = 0, et
donc a = b = c = 0.
Elle est donc une base de C(A), qui est donc de dimension 3.

exercice 2
2.1.1 ch est paire, sh est impaire.
2. sh'(x) = ch(x) > 0 : sh est strictement croissante sur R. Les limites
(+( en +(, (( en (() sont sans problème.
sh est strictement croissante sur R et sh(0) = 0, sh(x) est du signe de x.
3. En +(, sh(x) est équivalent à (1/2)ex, donc sh(x)/x est équivalent à
(1/2)(ex/x), donc tend vers +(, donc il y a une branche parabolique de
direction (Oy).
4. sh est continue strictement croissante sur R, lim+( sh = +(, lim(( sh =
((, donc h réalise une bijection de R sur R.
5. ch' = sh, dont le signe est connu. Les limites sont sans problèmes.
ch est strictement décroissante sur ]((, 0], strictement croissante sur [0,
+([ ;
h(0) = 1, lim(( ch = +(, lim+( ch = +(.
6. Pour tout x appartenant à R, ch(x) ( sh(x) = e(x > 0, donc ch(x) > sh(x)
7. Les fonctions ch et sh que nous venons d'étudier sont les fonctions
cosinus hyperbolique et sinus hyperbolique. Leurs représentations
graphiques traînent un petit peu partout. Par exemple, on appelle chaînette
la représentation graphique de la fonction ch, pour une raison que je vous
laisse deviner (pas parce ch comme chaînette...).
Et pourquoi cette appellation baroque ? Calculez ch2(x) ( sh2(x), et vous
verrez que ch et sh jouent le même rôle pour l'hyperbole équilatère (x2 (
y2 = 1) que cos et sin pour le cercle trigonométrique (x2 + y2 = 1).
8. Pour tout dans R* :
[pic]
f((0) = f(0), et la fonction f est paire.
9. On commence par écrire le DL de ex en 0 à l'ordre 3 : (( est une
fonction quelconque de limite nulle en 0)
[pic]
puis celui de e(x :
[pic]
et enfin celui de sh(x) :
[pic]
10. On obtient alors pour f :
[pic]
donc f est continue en 0.
Pour la dérivabilité de f en 0 :
[pic]
Donc f est dérivable en 0, et f '(0) = 0.
11. f est dérivable sur R+* et sur R(* car c'est le quotient de deux
fonctions dérivables avec le dénominateur qui ne s'annule pas. Pour tout x
différent de 0 :
[pic]
12. h(x) = sh(x) (x ch(x), h'(x) = ch(x) (ch(x) ( x sh(x) = (x sh(x) < 0
pour x > 0. h est donc strictement décroissante sur [0, +([, et comme h(0)
= 0, h est donc négative sur ]0, +([.
13. f '(x) = h(x)/sh2(x) pour x différent de 0. f '(0) = 0.
f est paire, strictement décroissante sur [0, +([, strictement croissante
sur ]((, 0].
f(0) = 1, lim+( f = 0 car f(x) équivalent à 2x e(x, lim(( f = 0 par parité.
On a comme souvent une bonne allure de cloche (pour la courbe
représentative de f !)
2.2.1. f(0,8) ( 0,9, donc f(0,8) ( 0,8 ; f(0) =1 ; f est décroissante sur
[0, +([ ; donc
f([0,8 ; 1]) ( [0,8 ; 1] .
Et laissons tomber cette notation anglo-saxonne envahissante (un point en
lieu et place de notre chère virgule), qui se révèle de plus dans le
contexte comme particulièrement inesthétique...
Il en résulte, par une récurrence enfantine : Pour tout n appartenant à N,
un ( [0,8 ; 1].
2. Pour x différent de 0 : f(x) = x ( x/sh(x) ( x = 0 ( x(sh(x) ( 1) (
sh(x) = 1.
sh est une bijection de R sur R, il existe donc ( unique tel que sh(() = 1
; ( est différent de 0 car sh(0) = 0. L'équation f(x) = x admet donc une
unique solution (.
3. sh(0) = 0 donc ( > 0 ; sh(1) = (e ( e(1)/2 > 1 donc ( < 1. Donc 0 < ( <
1, mais cela ne suffit pas, l'encadrement utilisable pour les questions qui
vont suivre est 0,8 ( ( ( 1.
La fonction définie par g(x) = f(x) ( x est strictement décroissante sur
[0, +([, car sa dérivée g' = f ' ( 1 est négative sur [0, +([ ; g(0,8) ( 0
et g(1) ( 0 ; donc 0,8 ( ( ( 1.
Maintenant, f '(x) = h(x) / sh2(x), et, pour tout x dans [0,8 ; 1] :
h(1) ( h(x) ( h(0,8) car h est décroissante sur [0,8 ; 1] ; mais attention
les nombres sont négatifs, et toutes nos connaissances techniques sont
remises en cause. Le plus simple est de se ramener à des nombres positifs :
(1) (h(1) ( (h(x) ( (h(0,8) > 0
sh2(0,8) ( sh2(x) ( sh2(1), car sh2 est croissante sur [0,8 ; 1] (composée
de deux fonctions croissantes, ou de dérivée 2sh(x)ch(x) > 0 pour x > 0) ;
les nombres sont positifs, donc
[pic]
En "multipliant entre elles" les inégalités (1) et (2), de même sens et
portant sur des nombres positifs, on obtient le résultat à "justifier",
après avoir remultiplié par (1...
4. Il résulte alors des données que pour tout x dans [0,8 ; 1], on a (0,5 (
h'(x) ( 0, et donc (h'( ( 0,5 sur [0,8 ; 1] .
( appartient à [0,8 ; 1] et, pour tout n, un appartient à [0,8 ; 1] : tout
est en place pour utiliser la formule des accroissements finis pour obtenir
(un+1 ( (( ( 0,5 (un ( ((. La récurrence habituelle donne (un ( (( ( 0,2
(0,5)n.
((u0 ( (( = (1 ( (( ( 0,2 est clair vu la taille de l'intervalle [0,8 ; 1]
).
5. La limite de (0,5)n est 0 car 0 < 0,5 < 1, la limite de un est donc (.
6. On sort la machine à écrire :
program ecricome ;
var u : real ; k : integer ;
BEGIN u : = 1 ; for k : = 1 to 10 do u : = 2*x / (exp(x) ( (exp((x)) ;
write(u) ; END.

exercice 3
3.1.1. Formule de Bayes :
[pic]
2.a. Une question de cours et qui ne s'en cache pas : Y prend ses valeurs
dans N et pour tout k dans N, P(Y = k) = e(20 20k / k! ; E(Y) = 20 ; V(Y) =
20.
b. Si k ( n, P(X = k / Y = n) = Cnk (0,1)k (0,9)n(k car les fabrications
des pièces sont indépendantes.
Si k > n, P(X = k / Y = n) = 0.
c. Encore une occasion de faire ce calcul archi-classique, mais non
élémentaire, et que tout le monde se doit de parfaitement maîtriser. On
utilise la formule des probabilités totales avec le système complet
d'événements indiqué :
[pic]
Et on obtient la conclusion.
3.2.1. f est positive, continue sur R privé de 0, et
[pic]
f est donc une densité de probabilité.
2. Pour x ( 0, FZ(x) = 0 ;
[pic]
3. Existence : la fonction qui à t associe 2t/(1 +t)3 est continue et
positive sur [0, +([, et équivalente en +( à 2/t2. Par comparaison avec
l'intégrale de Riemann somme de 1 à +( de 2/t2dt, on en conclut que
l'intégrale est convergente.
Calcul : avec x > 0,
[pic]
L'intégrale est donc convergente... et vaut 1.
4. Sous réserve de convergence :
[pic]
Or :
[pic]
Donc Z admet une espérance et E(Z) = 1.
5. Z n'admet pas de moment d'ordre 2, car l'intégrale de (( à +( de t2f(t)
est égale à l'intégrale de 0 à +( de 2t2/(1+t)3, qui est une fonction
continue, positive sur [0, +([, et équivalente en +( à 2/t. Or l'intégrale
de 1 à +( de 2/t est divergente, d'où le résultat.
Z n'admet pas de moment d'ordre 2, donc pas de variance.
6.a) P(C) = P(Z > 2) = 1 ( P(Z ( 2) = 1 ( FZ(2) = 1/9
P(D) = P(Z ( 3) = FZ(3) = 1 ( 1/16 = 15/16
[pic]
b) i) (T ( x) = (Z1 ( x) ( (Z2 ( x)
ii) Z1 et Z2 sont indépendantes et suivent la même loi que Z, on en déduit
que pour tout x réel :
P(T ( x) = [P(Z ( x)]2
C'est à dire GT(x) = [FZ(x)]2
c) GT est continue sur R car c'est la composée de deux fonctions continues
sur R. GT est une fonction de classe C1 sur chacun des intervalles ]-? ;
0[, ]0 ; +?[. T est donc une variable aléatoire à densité.
GT'(x) = 0 si x < 0, et si x > 0 :
[pic]
Une densité de T est donc la fonction g définie par
[pic]
3.3.1. C'est une question de cours :
v(t) = 0 si t < 0 ; v(t) = 2e(2t si t ( 0 ;
w(t) = 1 si 0 ( t ( 1 ; w(t) = 0 sinon.
3.3.2. S = M + N, et, par linéarité de l'espérance E(S) = E(M) + E(N) = 1/2
+ 1/2 = 1 minute.
A bas les cadences infernales !