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ABSTRACT
A society creates wealth by utilizing its resources and distributes it. The decision for how to create wealth and how to distribute it is critical for the survival of a society. An approach to make these types of decisions is called a multi-armed bandit problem, where the multi-armed bandit problem is concerned with optimal allocation of resources between competing activities, in order to generate benefits depending upon the degree of evolution of the activities.  In this work, an optimal decision making approach to select several competing projects at a time, based on the multi-armed bandit problem, was considered.
Keywords: Multi-armed bandits, index policies, ensemble of projects.

INTRODUCTON
The problem is to decide how to utilize available resources, as time goes by, in order to maximize the collective utility. Consequently, relevant facts will be obtained and processed under a background knowledge, in order to generate sufficient and necessary information to make a decision, as best as it could be. In the rich and long history of decision making methods, there is one which is relevant for this work, known as the sequential analysis, Wald (1947), Wald (1950), and Robbins (1952), and it refers to deciding when is the best time to terminate an experiment and to take actions accordingly.

Our goal is to allocate resources sequentially into several activities such that the overall benefits collected during the life cycle of all activities will be maximized, Thompson (1933).  The multi-armed bandit problem, Gittins (1972) and Gittins (1979), approaches to these types of problems, where a multi-armed bandit refers to a collection of independent binomial reward processes and a multi-armed bandit problem is how to select one process and also for how long to activate it, in order to collect the maximum expected average reward. It is assumed that the state of the activated process will change, according to a probability law, yet the states of the inactive processes will not change.  
The state-space is the cartesian product of the individual bandits’ state space, and also, the σ-field is generated by the tensor product of individual bandit’s σ-fields, parametrized by time. Thus, the evolution of a multi-armed bandit process is governed by a semi-Markov decision process, with a binary action space. As one process is activated, the probability law that shapes this process is learned, to some extent. Therefore, choosing between bandits that are known versus bandits which are unknown introduces the dilemma of choice. It may be tempting to activate the bandit which we have the most experience, for less risk immediate gain, yet a bandit which we have not experimented may have a better chance to be the most profitable one. That is the dilemma of taking actions that yield immediate reward versus actions such that their rewards would only appear in the future, Kiefer (1952) and Lai (1985). 

There is an approach to solve these classes of problems, based on the Hardy-Littlewood maximal function theorem, which states that among a set of measurable functions, say 

{fi | iI} over an index set I, the maximal function is found by comparing the volume generated by these functions subject to the measure, relative to the volume generated by the measure itself, say µ > 0, then the supremum of this ratio identifies the maximal function, 

                                                  Mf=supiI {∫ dµ (fi) / ∫ dµ}                                              (1)

An economical index based on ensemble averages of economical entities, and maximal function theorem was constructed by Wald (1939). Another application of this theorem is to solve the multi-armed bandit problems by constructing a positive measure of performance for bandits that depends upon their history and to allocate resources at each decision moment to a bandit that has the highest performance measure at that time. 
This performance measure is known as the “Gittins’ index,” Gittins (1972). If there are finite number of bandits, say N, then let (0,1) be a discount factor, Xi t be the state of the bandit i at time t, and R(Xi t) be the bounded reward generated by activating the bandit i at time t, starting at an initial time s, for i=1,2,3,…,N.  
The discounted expected reward would be:
                                                    E[i=1,N t=s,T t R(Xi t)| F(Xis)]                                     (2)

We are trying to maximize it by selecting an activation order of the projects.

Hence, the Gittins’ index for the bandit i, at time s, be

   Gi(s) = sup>s {E[t=s,-1 t R(Xi t)| F(Xis)]/E[t=s,-1 t| F(Xis)]}             (3) 

Where F(Xis) is the σ-field generated by the history of Xis and  is the stopping time of the activated bandit i, such that 

   =argsup>s {E[t=s,-1 t R(Xi t)| F(Xis)]/E[t=s,-1 t| F(Xis)]}                (4)

This formulation helps to compare performance of the bandits and then select the one that will provide the maximum reward rate, together with its activation time duration. Ordering bandits by using their Gittins’ index, from the highest index to the lowest index, provides an optimal policy for activating them, Gittins (1979).  For more comprehensive information, please see Gittins (1989) and Gittins (1994).  

A generalization of the multi-armed bandit problem is to let bandits influence each other, while keeping the independence assumption for the state transition probabilities for the bandits. A multiplicative influence for the rewards was introduced by Nash (1980), with a performance measure different than Gittins’ index, known as the Nash index. Let Q(Xjt) be the positive, bounded influence factor of bandit j at a state Xjt which is not activated at time t.  

Then the discounted influential expected reward would be 

   E[i=1,N and i≠j t=s,T t R(Xi t)  j=1,N and j≠i Qj(Xjt) | F(Xis)]                      (5)          

The Nash index was defined as 

Ni(s)=supT {E[t=s,-1 t R(Xi t)| F(Xis)]/E[Q(Xis)-t Q(Xi)| F(Xis)]}     (6)

for the bandit i, Nash (1980). 

SELECTING SEVERAL COMPETING PROJECTS SEQUENTIALLY
If one is capable of activating more than one project at a time, then the search for an optimal policy to obtain the best possible expected collective return, according to these choices, is a reasonable task. Where possibility of finding an optimal selection policy was conjectured by Whittle (1988). By employing the multi-armed bandit problem, together with the Nash index policy, we can construct an approach for choosing a subset of competing projects out of a set of feasible projects.  Hence, the collective activation of influential armed-bandits model is as follows.

Model Assumptions:

(I) There are finitely many, N, statistically independent processes (projects) to choose from and each one has a state of nature, Xi t, at a time t in a finite time horizon, for i=1,2,…,N.  

(II) Each selected project provides a positive reward on activation, R(Xi t)>0, subject to a discount factor, (0,1), which identifies the present value of the reward.

(III) Each non-selected project influences the reward of the selected projects with a multiplicative factor, Q(Xjt)(0,1), at time t, for j=1,2,…,N.

(IV) The selected project changes its state, but non-selected ones do not change their states.

The above model expresses that each selected project provides a reward according to a probability distribution where a project also influences the reward of other projects through a multiplicative influence factor, known as the generalized reward-decision processes, Gittins (1994). Here, as an extension of this model, an ensemble of processes is selected at a decision time and their collective time-discounted rewards provides the decision making criterion.

Let us select 1  k N projects at a time. Also, let I be the index set of the activated bandits and J be the index set of inactive bandits. Thus, the collective expected return, subject to competition at time t, will be

jJ Qj(Xjt) iI t E[Ri (Xi t)| F(Xit)]                                          (7)                      

Let Family_1 be defined as collection of bandits with the property 

E[Q(Xjs)-t Q(Xj)| F(Xjs)]<0, for >s                                          (8) 

Where
T={| E[Q(Xjs)-t Q(Xj)| F(Xjs)]<0}, for >s                              (9) 

Also, let Family_2 be the collection of bandits with the property 

E[Q(Xjs)-t Q(Xj)| F(Xjs)]0, for >s                                         (10)

Where




T={|>s}


                             (11)

This introduces a preference relation between two families such that Family_1 is preferred to Family_2. 

According to this construct, there is an optimal policy that maximizes the overall expected discounted rewards, as follows: 
a) Select a bandit in Family_1 with maximum Nash index, find its stopping time, set the initial time, s, to this stopping time for the next project, activate it, finish it, and repeat. 

b) When the Family_1 is empty, apply the selection process to the Family_2. 

A proof of the optimality of this policy was provided by Nash (1980).
The finiteness of the state-space and the time-horizon enable us to construct a combinatorial algorithm with finite steps. The rate of growth is related with the dimension of the space, according to the Hilbert-Noether theorem, see Schmid (1991). Thus, there is an upper bound on the number of generators. Hence, the orbit space, or power set, of the bandits collective is constructed by permuting its coordinates and the identifier of this tensor algebra has a finite degree, which is equivalent to the construction of group cohomology of a discrete torsion-free group that is isomorphic to a finite lattice structure, generated by integers. Also known as the matroidal structure. Hence, there exist a maximum and a minimum element in this finite lattice. Consequently, a greedy algorithm would be sufficient to construct the basis of this group, see Edmonds (1970) and Welsh (1976), or, searching for the longest chain which identifies the maximum expected total discounted reward. 
Based on this information, we can introduce the following lemma.
Lemma: There is an optimal activation policy for an ensemble of competing projects.

Optimal Policy:

Without loss of generality, set the starting time for all activities to be zero and put all your projects into a selection list. 

Step-1: Selection: Order projects from maximal Nash index to minimal Nash index. Find the maximal Nash index project, allocate it for the selected projects set, then discard it from the selection list, repeat  until you have chosen the necessary number of projects, k, if more than k projects are available; otherwise select them all, for an ensemble of projects and activate them, according to their index-based ordering.

 Step-2: Find the minimum stopping time of these selected projects, and set the new starting time for the next coming ensemble of projects to this minimum stopping time.

Step-3:  Repeat the previous steps for the next ensemble of projects, until no more projects left in the selection list.
Proof of the Lemma: 

Since we want to generate the maximum expected discounted collective rewards, one can see that the above algorithm generates an optimal selection, by using an interchange argument, that is if you change the order of activation between any early projects with any of the later ones, then it is impossible to exceed the original maximal expected total reward, due to time discount. Hence, this sequence of projects were bundled into an ensemble of k-projects, by preserving the original optimal ordering and activated together initially, and then the projects in the ensembles are activated by their optimal order, as soon as an activation time is available. 
Therefore, activating each ensemble does not contradict to the original optimal activation sequence for individual projects, hence changing the order of activation of these projects would result a reduction in the total expected discounted reward.    


The existence of the maximal total expected discounted reward is provided by the finite integer lattice structure, but the maximal element may not be unique. In the case of multiple maximal elements, the first optimal policy that is identified would be sufficient, since we do not want to allocate our time to search for all possible optimal policies. 
CONCLUSIONS
In this work, an optimization method for sequentially choosing some from many competitive projects has been considered. The multi-armed bandit problem, Gittins (1979), is the predecessor of our work. Another approach would be constructing a multivariate stochastic differential equations model and solving it based on empirical boundary conditions that satisfy certain model-filtration assumptions, Karatzas (1996). Moreover, competition or cooperation, is a realistic form of influence among projects. 
Hence, we have incorporated a multiplicative influence factor, expressing competition or cooperation among projects, in the collective discounted reward structure, by following the work of Nash (1980).

On the other hand, our model assumes perfect information for sequentially activating these ensembles of projects, Gursoy (1997), which may not be a practical approach; in that case a model that would incorporate the missing information may be a better approach, see Kumar and Varaiya (1986). Or, a restless bandit model which differs from others by letting the changing of the state of un-activated bandits as well as changing states of the activated ones, Glazebrook (2013). 
The algorithm presented here provides an optimal selection policy among the influential projects to select an ensemble of projects with their activation times and how long they will be active, based on choosing the highest influential expected reward rate projects first, and sequentially choosing the next set of highest influential reward rate projects, etc., until no more projects left. 
The computational complexity of Nash indices is discouraging at best. If you set the multiplicative influence factor to be one, then the influences among projects will disappear, and consequently the decision problem can be approached by the Gittins index method. 
This would lead to find an upper bound to the discounted influential expected reward, since the multiplicative discount factors are less than one, their products is also less than one. 
There are computationally efficient algorithms designed to compute Gittins indices; see Katehakis and Veinott (1987), also Varaiya and Walrand and Buyukkoc (1985), which are suitable for computing the discounted expected rewards. 
Another approach is to construct bounds for the optimal expected discounted reward by utilizing a myopic policy, or a greedy algorithm, see Edmonds and Karp (1970), such that it selects an ensemble of projects that will provide the maximum collective influential reward at a decision time, without paying any attention to the future alternatives, until all the project ensembles are scheduled to be activated.  This myopic selection would provide a lower bound to the optimal reward. Also, when we set the discount factor to be equal to one, that is the total influential reward is independent of the projects’ activation time sequence, and apply the myopic policy to schedule activation of the ensemble of projects, then the total undiscounted influential reward achieved by this policy would provide an upper bound for the optimal total discounted influential reward.  These bounds will significantly contribute to do computations of the expected revenues when the number of projects makes it impossible to compute the Nash indices.
The above approach provides an optimal schedule for activating collection of projects, at a time, and can be generalized further if one wishes to introduce different discount factors to different projects, such as different interest rates, see Brown (2013), since this interest rate multiplier appears in the terms of a finite sum and it may take different values for each term. 
The optimization is based on the expected values in this work; on the other hand, averages may not be suitable for rare event scenarios, where the law of large numbers may not be applicable, therefore a performance measure which is different than the expected value must be used. 
Another approach to look for an optimal policy that maximizes the probability of collecting the maximum discounted reward can be constructed by using stochastic programming, see Prekopa (1995), or minimizing regret for the actions, see Rusmevichientong (2014).  
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