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ABSTRACT
Suppose that one can observe bivariate random variables 
[image: image1.wmf])

,

(

X

L

 only when 
[image: image2.wmf]X

L

£

 holds. Such data are called left-truncated data and found in many fields, such as experimental education and epidemiology. Recently, a method of fitting a parametric model on 
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 has been considered, which can easily incorporate the dependent structure between the two variables. A primary concern for the parametric analysis is the goodness-of-fit for the imposed parametric forms. Due to the complexity of dependent truncation models, the traditional goodness-of-fit procedures, such as Kolmogorov-Smirnov type tests based on the Bootstrap approximation to null distribution, may not be computationally feasible. In this article, we develop a computationally attractive and reliable algorithm for the goodness-of-fit test based on the asymptotic linear expression. By applying the multiplier central limit theorem to the asymptotic linear expression, we obtain an asymptotically valid goodness-of-fit test. Monte Carlo simulations show that the proposed test has correct type I error rates and desirable empirical power. It is also shown that the method significantly reduces the computational time compared with the commonly used parametric Bootstrap method. Analysis on law school data is provided for illustration. R codes for implementing the proposed procedure are available in the supplementary material.
Key words   Central limit theorem • Empirical process • Truncation • Maximum likelihood •   Parametric Bootstrap • Shrinkage estimator
1. Introduction

Truncated data are those from which part of them are entirely excluded. For instance, in the study of aptitude test scores in experimental education, only those individuals whose test scores are above (or below) a threshold may appear in the sample (Schiel, 1998; Schiel and Harmston, 2000). Many different types of truncation are possible depending on how to determine the truncation criteria. A classical parametric method for analyzing truncated data is based on a fixed truncation. That is, a variable 
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 is known. Parametric estimation for the normal distribution of 
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 has been given by Cohen (1991). Other examples of the fixed truncation include the zero-truncated Poisson model in which 
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   A more general truncation scheme is the so-called “left-truncation” in which the sample is observed when a variable 
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. The left-truncated data is commonly seen in studies of biomedicine, epidemiology and astronomy (Klein and Moeschberger, 2003). Construction of nonparametric estimators for 
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 under the left-truncation has been extensively studied (e.g., Woodroofe, 1985; Wang, et al., 1986). It is well known that the nonparametric methods rely on the independence assumption between 
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. Accordingly, Tsai (1990), Martin and Betensky (2005), Chen, et al. (1996), and Emura and Wang (2010) have presented methods for testing the independence assumption. For positive random variables 
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, semiparametric approaches proposed by Lakhal-Chaieb, et al. (2006) and Emura, et al. (2011) are alternatives in the absence of independence assumption, where the association structure between 
[image: image17.wmf]O

L

 and 
[image: image18.wmf]O

X

 is modeled via an Archimedean copula.
   Compared with the nonparametric and semiparametric inferences, there is not much in the literature on the analysis of left-truncated data based on parametric modeling. Although parametric modeling easily incorporates the dependence structure between 
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, it involves strong distributional assumptions, and the inference procedure may not be robust to departures from these assumptions (Emura and Konno, 2010). Nevertheless, parametric modeling is still useful in many applications where parameters in the model provide useful interpretation or a particular parametric form is supported by the subject matter knowledge. For instance, in the study of aptitude test scores in educational research, researchers may be interested in estimating the mean and standard deviation of the test score 
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 (Schiel and Harmston, 2000; Emura and Konno, 2009). Hence, parameters of the normal distribution usually provide useful summary information (see Section 5 for details). For another example, the study of count data in epidemiological research often encounters the zero-modified Poisson model (Dietz and Böhning, 2000) for 
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 (see Example 3 in Appendix A for details). For count data, the main focus is to estimate the intensity parameter of the Poisson distribution rather than 
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. In the preceding two examples, one needs to specify the parametric forms of 
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. If the goodness-of-fit tests are used appropriately, the robustness concern about the parametric analysis can be circumvented.
In this article, we develop a computationally attractive and reliable algorithm for the goodness-of-fit test by utilizing the multiplier central limit theorem. The basic idea behind the proposed approach follows the goodness-of-fit procedure for copula models (Kojadinovic and Yan, 2011; Kojadinovic, et al., 2011), though the technical details and the computational advantages in the present setting are different. The rest of the paper is organized as follows: Section 2 briefly reviews the parametric formulation given in Emura and Konno (2010). Section 3 presents the theory and algorithm of the proposed goodness-of-fit test based on the multiplier central limit theorem. Simulations and data analysis are presented in Sections 4 and 5, respectively. Section 6 concludes this article.
2. Parametric inference for dependently truncated data

In this section, we introduce the parametric approach to dependent truncation data based on Emura and Konno (2010) and derive the asymptotic results of the maximum likelihood estimator (MLE) that are the basis for the subsequent developments. 
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, the likelihood function has the form
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. Emura and Konno (2010) noted that for computing the MLE, it is crucial that the simple formula of 
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 is available. This also has a crucial role in the subsequent developments for the proposed goodness-of-fit test procedure. For easy reference, Appendix A lists three examples of the parametric forms that permit a tractable form in 
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. The following Lemma is a basis for deriving the asymptotic expression for the goodness-of-fit statistics.
Lemma 1: Suppose that (R1) through (R7) listed in Appendix B hold. Then,
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3. Goodness-of-fit procedure under truncation

3.1 Asymptotic linear expression of the goodness-of-fit process

Let 
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One of the popular classes of goodness-of-fit tests consists of comparing the distance between 
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The Kolmogorov-Smirnov type test is based on 
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The calculation of 
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 requires the numerical integrations (or summations) for 
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This requires exactly 
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     Empirical process techniques are useful for analyzing the goodness-of-fit process 
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Theorem 1: Suppose that (R1) through (R8) listed in Appendix B hold. Under 
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3.2 Algorithm based on the multiplier central limit theorem
Equation (5) is the basis for developing a resampling scheme based on the multiplier central limit theorem (van der Vaart and Wellner, 1996). Let 
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Conditional on 
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. The following lemma shows that the substitution does not alter the asymptotic behavior; the proof is given in Appendix D.

Lemma 2: Suppose that (R1) through (R8) listed in Appendix B hold. Under 
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Therefore, the distribution of 
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The testing algorithm is as follows. Modifications of the algorithm for the statistic 
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in (3) are straightforward.
Algorithm based on the multiplier method:

Step 0: Calculate the statistic 
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Step 2: Calculate 
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Step 3: Reject 
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The algorithm based on the parametric Bootstrap method (Efron and Tibshirani, 1993) is provided for comparison with the multiplier method.
Algorithm based on the parametric Bootstrap method:
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In Step 1 of the multiplier method, it is fairly easy to generate 
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 In Step 2, the multiplier method only needs to multiply the standard normal vector to 
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     Beside the computational time spent, the parametric Bootstrap method can produce erroneous results when some of 
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      Finally, we give the validity of the method along the lines of Kojadinovic, et al. (2011). Let 
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Theorem 2: Suppose that (R1) through (R8) listed in Appendix B hold. Under 
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3.3 Computational aspects
To compute the proposed goodness-of-fit statistic based on the multiplier method, one needs to calculate 
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. Although these can be calculated for each specific parametric model, the formulas are not always easy. In what follows, we describe how to calculate these quantities for the bivariate normal, bivariate Poisson, and zero-modified Poisson models discussed in Examples 1-3 of Appendix A.

For the bivariate normal, bivariate Poisson, and zero-modified Poisson models, their formulas are written respectively as:
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3.4 Generalization to other estimators for 
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   Although the proposed goodness-of-fit procedure is developed in the case where 
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 is estimated by the MLE, it is not difficult to modify it for more general estimators. The fundamental requirement is that the estimator is asymptotically linear as in (2). A particularly interesting example in the dependently truncated data is the shrinkage “testimator” (Waiker et al., 1984). Suppose that the parameter can be written as 
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Remark 1:  According to condition (R1) in Appendix B, the parameter space for 
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Theorem 3: Suppose that (R1) through (R8) listed in Appendix B hold. Further suppose that either one of the following conditions holds: (i)  
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The proof of Theorem 3 is similar to that of Theorem 1 based on the result of Lemma 3. Therefore, the algorithm developed in Section 3.2 is applicable by replacing 
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4. Simulation results

To investigate the performance of the proposed goodness-of-fit test, we conducted extensive simulations using R. All results reported in this section are based on the standard normal multiplier 
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 and the results based on the two-point multiplier are given in Section 2 of the supplementary material.
4.1 Simulations under the null distribution

In the first part, we have chosen the same design as Emura and Konno (2010) in which 
[image: image251.wmf])

,

(

O

O

X

L

 follows the bivariate normal distribution with the mean vector and covariance matrix given respectively by 

[image: image252.wmf]ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

=

60.82

62.63

-

120

X

L

m

m

μ

, 
[image: image253.wmf]ú

û

ù

ê

ë

é

´

´

=

ú

û

ù

ê

ë

é

=

2

2

2

2

16.81

16.81

19.64

16.81

19.64

19.64

LX

LX

X

LX

LX

L

r

r

s

s

s

s

Σ

,
where 
[image: image254.wmf]=

LX

r
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The R mvrnorm routine in MASS package (Ripley et al., 2011) is used to generate random samples from the bivariate normal distribution. Truncated data 
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   In the second part, we carried out simulations under the bivariate Poisson model and zero-modified Poisson model. Hence, the null hypothesis is 
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    In the final part, we compare the computational time between the proposed and the parametric Bootstrap methods under the bivariate normal and bivariate Poisson models. For a fixed dataset, we calculate the required computational time (in seconds) of the two competing methods using the routine proc.time( ) in R. As shown in Table 3, the required computational time for the multiplier method is much smaller than that for the parametric Bootstrap method for all entries. In particular, the use of the multiplier method under the bivariate Poisson distribution reduces the computational time by 1,000 times.
Insert Table 3

4.2 Power property

To investigate the power of the proposed test, we generated data from the bivariate t-distribution (Lang et al., 1989) while we performed the goodness-of-fit test under the null hypothesis of the bivariate normal distribution. The mean and scale matrix of the bivariate t-distribution are chosen to be the same as the mean and covariance matrix of the bivariate normal model in Section 4.1. As the degree of freedom parameter
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5. Data analysis

The proposed method is illustrated using the law school data available in Efron and Tibshirani (1993). The data consist of the average score of the LSAT (the national law test) and average GPA (grade point average) for 
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The resulting estimate is 
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618.63, which seems somewhat larger than the average LSAT score 597.55. This bias may result from the wrong independence assumption between LSAT and GPA.  

We fit the bivariate normal distribution models for the truncated data. The p-values of the goodness-of-fit test for the bivariate normality are 0.884 for the multiplier method (required computational time = 1.25 seconds) and 0.645 for the parametric Bootstrap method (required computational time = 222.46 seconds). Both methods reach the same conclusion that there is no evidence to reject the bivariate normality assumption. 
We proceed to the parametric analysis under bivariate normality. The estimated population mean of LSAT is 
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=0.598. Our study shows that the parametric analysis of the dependently truncated data produces reliable results when the goodness-of-fit test favors the fitted model. Note that all the analysis results are easily reproduced by the R codes in the supplementary material.
A reviewer has pointed out the difference of the p-values between the two methods. This is explained by the right skewness of the resampling distribution for the multiplier method compared to that for the parametric Bootstrap (Figure 2). The difference of the two resampling distributions may be attributed to a slight departure of the data generating system for the LSAT and GPA values from the bivariate normal model. In particular, a few ties in the LSAT and GPA values indicate that the data do not exactly follow the bivariate normal model. This implies that the two resampling procedures can yield different powers in real applications.
Insert Figure 2

6. Conclusion and discussion
The main objective of the present paper is to develop a new goodness-of-fit procedure for parametric models based on dependently truncated data. The method utilizes the multiplier central limit theorem and has the advantage of being less computationally demanding than the parametric Bootstrap procedure by avoiding the complicated resampling scheme of the parametric Bootstrap under dependent truncation. Note that the method is easily implemented by the R codes available in the supplementary material.

Although many studies have already applied the multiplier method in many different contexts (Spiekerman and Lin, 1998, Jin et al., 2003; Bücher and Dette, 2010; Kojadinovic and Yan, 2011), the computational advantage for dependent truncation models is remarkable. The idea can be applied to a variety of problems in which the Bootstrap resampling involves truncation. In particular, generalizations of the proposed method to even more complicated truncation schemes, such as double truncation and multivariate truncation, deserves further investigation. 
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Appendix A: Examples of parametric models

Example 1: Bivariate t- and normal distributions.

Let 
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where the positive definite matrix 
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 is called scale matrix. The density of the bivariate t-distribution is given by
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where 
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 is the gamma function,
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Example 2: Random effect model

Suppose that 
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 is calculated from packages, for example, using “ppois” in R. ( 

Example 3: Zero-modified Poisson model

Suppose that 
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Re-parameterizing by 
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Appendix B: Regularity conditions

By modifying the regularity conditions (e.g. p.257 of Knight (2000)) with the truncated data, the following conditions are sufficient for verifying the asymptotic results:  
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Remarks on condition (R8): The Fréchet differentiability of 
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Appendix E: Proof of Theorem 2:

By Lemmas 1 and 2, 
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Appendix F: Proof of Lemma 3
It is enough to show that
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 which proves (F1). (
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