Skeleton Solutions to the Exercises
(These are only skeleton solutions, you would need to add more detail if these were in a test or exam) Also asymptotic t-statistics are exactly the same as t-statistics in terms of their interpretation.
Lecture 1

1) The main reason for using panel data is to expand the degrees of freedom and avoid collinearity. However it also has some advantages over a cross sectional or times series approach. The advantage over a cross sectional regression is that it can be used to account for any unobserved heterogeneity. In addition it can be used to introduce a dynamic structure into a cross sectional regression. Panel data can also overcome some of the problems of aggregation bias as well as pick up effects that cross section and time series regressions miss out.

2) Unobserved heterogeneity refers to the unobserved effects on the individual or firm, which can not be directly measured. For individuals these can include ambition, parental influence etc. If this effect is ignored it induces inefficiency in the estimator.

3) Fixed effects overcomes the problem of unobserved heterogeneity, given the standard panel data model of the following form:
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Where:

Y is the dependent variable

Xj are the observed explanatory variables

Zp are unobserved explanatory variables

If we assume the unobserved effect does not vary over time and given that it is unobserved and difficult to measure, the model can be rewritten as:
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Where the δi is referred to as an individual unobserved specific effect which can be remedied in a number of ways although the most common is to include individual dummy variables for each cross section microunit.
4) The three ways of introducing fixed effects include the above dummy variable approach as well as using differenced variables in the model:
· Within-groups fixed effects, where the variation is explained about the mean of the dependent variable in terms of the variations about the means of the explanatory variables. However this method has potential problems such as the loss of the x variables that remain constant for an individual.
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The unobserved effect disappears from this model and is known as the within-groups regression model as it explains the variations about the mean of the dependent variable in terms of the variations about the means of the explanatory variables for the group of observations relating to a given individual.
· Taking first-differences of the variables. Again the problem with the x variable remains, but a potential advantage is that it could remove any problem of first-order autocorrelation.

5) If the unobserved effects are distributed randomly, we can treat the αi as random variables, drawn from a given distribution. This involves subsuming the unobserved effects into the disturbance term to give:




[image: image4.wmf]it

i

it

it

k

j

jit

j

it

u

v

v

x

y

+

=

+

+

=

å

=

d

a

a

2

0


 This is a random effects type of model is in general better than the fixed effects model as characteristics that remain constant for each individual remain in the model but have to be removed for fixed effects models.

6) This involves a general set of answers on the model and results, why panel data were used and how the model could be improved. In this case the panel data is used as they only have bi-annual data, which is not enough to give a time series based regression.

Lecture 2

1) A time series is stationary if it has a constant mean, variance and constant structure to the co-variance, i.e. the covariance between lags 1 and 4 is the same as 10 and 14. This is the definition of a weakly stationary series, a strictly stationary series has a distribution of its values that remain the same as time progresses.

2) An autocorrelation coefficient measures the correlation between lags of a specific variable, whereas the partial autocorrelation coefficient measures the correlation between lag t and t + k, whilst removing the effects of the intervening lags. Both coefficients are used to determine the order of an ARIMA model, however the ACF is used to determine the lags in the MA process and the PACF is used to determine the lags in the AR part of the model.
3) If ρk is plotted against k, the population correlogram is obtained. To produce a correlogram:

a) Compute the sample covariance and variance at lag k for series y.
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Where n is the sample size and 
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is the sample mean.

b) Then 
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plotted from k = 1 onwards.

 If a time series is stationary, the correlogram will indicate that all 
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values would be zero, non-stationary series usually have values significantly above zero, then declining for higher values of k. The statistical significance of 
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can be judged either by its standard error or the Q-statistic.

4)
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 The Q statistic suggests the series is stationary, the Ljung-Box that it is non-stationary, the different results are due to the small sample size..

4) An AR(3) model has 3 lags on the dependent variable.
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6)
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 This assumes that as the E(u)t = 0, then E(u)t-I = 0. Also that the variance of the error term is constant and the cross product terms of the lags of the error term all equal zero.
Exercise 3

1) To determine if the AR model is stationary, the characteristic equation needs to be defined and the roots of the equation examined:
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As both roots are more than one, they therefore lie outside the unit circle and yt is stationary. (I think I incorrectly said it was the other way round in the lecture!)

2) To determine the variance of the random walk, we first need to state that for any AR(p) process, according to Wold’s decomposition, it can be expressed as an MA(
[image: image14.wmf]¥

) process. (You don’t need to know the details of this, just the result)
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Given that the variance of a random variable is:
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 As the error term is assumed to be Gaussian we can ignore the cross product terms.
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3) There are two main criticisms of the Box-Jenkins methodology, firstly that it lacks theory and secondly that it tends only to reveal if the model is under parameterised rather than over parameterised. In general we prefer models to be as small or parsimonious as possible. The choice of lag length tends to be determined by the ACF and PACF or information criteria such as the Akaike criteria, without reference to a set theory determining the ARIMA lags. If the diagnostic tests are failed, the process then involves respecifying the model with more lags, however it can be argued that this is ad hoc and may not result in the best model. For this reason it is often referred to as more art than science, despite its ability to forecast well.

4) An out-of-sample forecast tends to be a better measure of how well a model forecasts than the in-sample forecast. This is because in the in-sample forecast the model used to produce the forecasts includes the observations that are used for the forecast. The MSE is:
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In the above case, the smaller the value of the MSE, the better the forecast. However the statistic in isolation is not very informative as its value depends on the units of the variables being forecast, so it needs to be used as a comparison with the MSE from a competing model such as the random walk.

5) The formula for measuring how well a model forecasts the correct signs of a variable is:
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This means that when the correct sign is predicted, zt+s takes the value of 1, if it gets the sign wrong it takes the value of 0, these are then added to produce the number of correct predictions. In finance in particular this is important, as a profit is often made when the correct direction of movement an asset takes can be predicted, whereas the magnitude of the movement is less important.

6) This answer would need to refer to Harvey’s two main criticisms of the ARIMA models, particularly the difficulty in obtaining the best ARIMA model and the lack of theory behind these models compared to a structural model, as he suggests this can have serious implications for forecasting over the long-run as it fails to pick up the cyclical nature of some time series. On the other hand other practitioners, such as Granger suggest they forecast better than far more complex structural models.

Exercise 4

1) A stationary process has a constant mean, variance and covariance structure, whereas a trend stationary process is stationary around a time trend. This involves including a time trend in the regression:
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      An I(1) variable needs to be differenced once to ensure it is stationary, whereas an I(2) variable needs to be differenced twice. This has implications for the cointegration tests.

2) The Dickey-Fuller and Augmented Dickey-Fuller (ADF) tests are basically a test for whether a series follows the random walk, which is a non-stationary I(1) process. The test itself is for the null hypothesis that the series follows a random walk and is not stationary:
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 The test is similar to the t-statistic, in that we are testing to determine if the coefficient on the lagged level variable equals zero. However the distribution is different, as it follows the tau distribution.

 Some of the limitations of the test are that it lacks power, whereby we conclude that it should accept the null hypothesis of a unit root more often than should be the case. The main reasons for this are that the sample length in terms of time may not be long enough, i.e. it is more important to have a long time series that a large number of observations. Another problem is that of structural breaks, many have argued that most time series are in fact stationary when the structural breaks are accounted for using dummy variables. However it can be difficult to identify where the structural breaks are.

3) Cointegration refers to a long-run relationship between two or more I(1) variables, whereby the residual term from an OLS regression between these variables is stationary I(0). This suggests the drift in the individual variables cancels out to produce a stationary residual, meaning there exists a long-run equilibrium relationship between the variables. If the model containing the I(1) variables is estimated using OLS, the R2 statistic may exceed the DW statistic, producing non-BLUE estimators and in itself being an indirect test for cointegration.

4) i) The lagged dependent variable has been added to the Dickey-Fuller test to remove any autocorrelation that would otherwise have been present and would have affected the interpretation of the result.

    ii) The test statistic is -0.7/0.15 which is -4.667. This exceeds the absolute value of the critical value so we reject the null of no cointegration. Therefore there exists a long-run relationship between the two variables.

c) The Granger Representation Theorem states that if there is evidence of cointegration between variables, then an appropriate error correction model can be formed, where the residual from the cointegrating relationship is used as the error correction term, having been lagged once. In this case we would expect the error correction term to be significant.

d) The Error Correction Model indicates that adjustment following a shock is relatively quick, with 60% of adjustment complete within one time period. The negative sign suggests the model is stable and the coefficient has a significant t-statistic, suggesting the variables are cointegrated and a valid long-run relationship exists between the money supply and stock prices.

Exercise 5 + 6
1)a) – Simultaneous equation bias occurs when one or more of the explanatory variables are endogenous.

· It leads to bias, where the explanatory variable and error term are correlated.

· This leads to failure of the 4th Gauss-Markov assumption, non-BLUE estimators and unreliable t and F statistics.

· It can be overcome by forming reduced-form equations or creating VARs and two-stage-least squares.
2) A reduced-form equation has only exogenous variables as the explanatory variables:
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 To be identified, we need to omit (M-1) variables from each equation. The first equation omits none so it is not identified. The second equation omits one, so it is exactly identified.

2) Two-Stage-Least-Squares is a means of overcoming the problem of simultaneous equation bias and can be applied to exactly identified or over-identified equations. It consists of two satges:

i) The first stage involves regressing the endogenous variable against all the exogenous variables in the system of equations. In the example of question 2, if we wished to estimate the coefficient on st in the second equation, we would need to regress this on all the exogenous variables in the system( i.e. the reduced form equation):
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This has the effect of purifying this variable of any influence from the residual.

The second stage involves substituting the fitted value for st into the second equation instead of the actual value of this endogenous equation:
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This will produce estimates of the coefficients and with a slight adjustment the standard errors, so t-tests can be carried out.
The advantages of 2SLS is that it is easy to carry out as all that is needed is  what the exogenous variables are, it can be carried out on overidentified equations. However it is a large sample test.
4) A VAR overcomes the problem of endogenous variables (most financial variables are assumed to be endogenous) as:


- All the explanatory variables are lagged, which are assumed to be pre-determined or exogenous


- All the equations are exactly identified, as the non-lagged variables are not used as explanatory variables.

5) 
The following is an example of a VAR(1) (i.e. a single lag on each variable).
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6) The ‘Granger Causality Tests’ test for causality between two or more variables. The test involves estimating the VAR, then in a 2 variable VAR, testing the significance of the lagged explanatory variables jointly.:

[image: image26.wmf]t

t

t

t

t

t

t

t

t

t

t

t

u

s

e

s

e

s

u

s

e

s

e

e

2

2

4

2

3

1

2

1

1

0

1

2

4

2

3

1

2

1

1

0

+

+

+

+

+

=

+

+

+

+

+

=

-

-

-

-

-

-

-

-

b

b

b

b

b

a

a

a

a

a


 In this case if the test was for causality from s to e. the test would be an F-test or Wald test for the joint significance of the two lagged variables on s.

i.e. 
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Lecture 7
1)Granger causality tests the direction of causality between two variables, it provides evidence on which variable ‘Granger causes’ which, i.e. do stock prices cause a change in output or does output cause stock price changes? To answer this you need to set up a standard VAR, with two equations, one has stock prices as the dependent variable, the other output as the dependent variable, the explanatory variables are various lags of both stock prices and output. The steps would involve:

· Use the Akaike or Schwarz-Bayesian criteria to determine the optimal number of lags to include in the VAR.

· Run the model with output as the dependent variable, test for the joint significance of the lagged stock price variables.

· Run the model with stock prices as the dependent variable, test for the joint significance of the lagged output variables.

· Draw any conclusions, if in the first model the lagged stock price variables had been jointly significant, we would have concluded that stock prices ‘Granger cause’ output.

(We assume the variables are not both I(1), if they had been we would first have tested for cointegration)

2)You would need to mention that these criteria can be used in a univariate way (sample variance is measured by RSS, divided by number of ovservations) or in a multivariate way, where the variance-co-variance matrix of the residual is used to measure the variance of the regression. In effect these criteria measure the incremental effect of an extra lag, the beneficial effect is that the RSS is reduced, the penalty is that one extra degree of freedom is used. If the latter outweighs the former effect, the lag is not benefiting the regression.:
· The Akaike and Schwarz-Bayesian criteria (See Lecture 2 for their formulae).

· The need to run separate regressions with different lags and note down the criteria

· The need to minimise (depending on the formulae) these criteria

· Then the need to check the diagnostic tests, especially test for autocorrelation. If autocorrelation is present in the optimal model as suggested by the criteria, you need to add in more lags until the autocorrelation has been removed.

 Overall the Schwarz-Bayesian tends to produce a more parsimonious lag structure, although there is no agreement on which is best.

3)
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If we then assume a simple two variablesystem, then the matrices and vectors in full would be:
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 The next step is to calculate the value for each dependent variable, given a unit shock to the variable 
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 variable had been significantly different to zero, then the shock would have affected both variables.
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 This implies that: 
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 This process continue until the value of the dependent variable either becomes zero (stable), as in this case or very large (unstable). You could have done the same process with 
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, it is the same process as the above.

4)The VAR approach is often criticised for being:

· Atheoretical, what determines the lag structure in the model?

· Given the sensitivity of the result to the number of lags, what should determine how many lags are included.

· Should the variables be stationary, Sims argues this is not necessary.

· Given the large number of lags, there is a danger of multicollinearity between lags of the same variable.

· The model has a large number of explanatory variables, this reduces the degrees of freedom and produces large numbers of insignificant variables, which reduces the efficiency of the regression.

· How are the coefficients to be interpreted? It is difficult to interpret the lags, as some can be positive and some negative.
5) A Vector Error Correction Model (VECM) has the same properties as a VAR, however it is in ECM format, where all the variables are differenced to ensure they are stationary and it incorporates an error correction term:
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 The above is a simple 2 variable model with a single lag, but could be much larger with higher order lags. They have the same characteristics as a VAR:

· They are criticised for being atheoretic

· Granger causality tests are often used with them, in this case long-run causality (error correction term) can also be assesses along with the short-run causality (lagged differenced explaatory variables).

· Impulse response functions are used to determine the effects of a shock to the VECM.

 However they improve on the basic VAR, as they take account of the stationarity of the variables, (this usually requires a test for cointegration first).

6) As mentioned above, short-run causality is a joint test of the lagged explanatory variables, usually using a F test or Wald test. However long-run causality, as mentioned by Granger, is a t-test of the significance of the error correction term. If significant it implies causality from the explanatory variable to the dependent variable. Granger also notes that cointegration is an indirect test for long-run causality in one direction.
Lecture 8
1) The Engle-Granger test is less appropriate for this type of model, compared to the Johansen Maximum Likelihood procedure, because it fails to account for the simultaneous equation bias, whereas the Johansen approach which uses a VAR technique is able to overcome the problem. The Engle-Granger test also has low power and accepts the null of no cointegration when in fact it is present. (The Johansen has the opposite problem!).

2) The α coefficient represents short-run adjustment parameters and is equivalent to the error correction term in the corresponding ECM, the β coefficients however represent the long-run vector. An alternative interpretation is that the β coefficients represent the cointegrating vectors and the α coefficients show the amount of each cointegrating vector entering each of the VECM equations.

3)  The Trace test indicates there are 2 cointegrating vectors and the Maximum Eigenvalue test statistics suggest there is 1 cointegrating vector present. The problem now is to determine whether there is 1 or 2 cointegrating vectors and if two which is the relevant one for the model you wish to test. If we assume two, one way is to view the normalised β coefficients and if the signs on the variables seem appropriate and the magnitudes of the coefficients seems correct, then choose that cointegrating vector from the choice of two, for any subsequent tests. (There are as many sets of β coefficients as there are cointegrating vectors). However if possible it is always easier to have a single cointegrating vector so it is best to argue that only one exists and this is based on the maximum eigenvalue test.
4) The main differences between the Trace test and Maximum Eigenvalue test relate to the hypotheses being tested mostly. The Trace test is a joint test, where the null hypothesis is that the number of cointegrating vectors is less than or equal to r, against an alternative which does not specify the amount present. In the case of o cointegrating vectors, all the eigenvalues are not significantly different to o. The maximum eigenvalue test carries out the test on each eigenvalue and has as the null hypothesis that the number of cointegrating vectors is equal to r, against an alternative of r + 1.
5) A vector error correction model (VECM) is a VAR in which the error correction term has also been incorporated into each individual equation in the VAR. It can be interpreted in much the same way as the usual error correction model and usually is used with the tests for cointegration, given that the Granger Representation Theorem holds for multivariate cointegration too.. The process involves initially testing for cointegration among the I(1) endogenous variables, then forming the VECM, which as with the usual ECM represents the short-run relationship. It can then be used as with the usual ECM for ‘Granger causality tests’ or forecasting.
6) The main criticisms of the Johansen ML approach relate to its use of a VAR, i.e. how to choose the lag length etc. Other criticisms relate to the presence of more than one cointegrating vector and then how to choose the best one. Wickens critique refers to the fact that with this test, the null hypothesis of no cointegration is rejected too often, when no cointegration is actually present.
Lecture 9
1) The main difference between the Least Squares and Maximum Likelihood methodologies is that the Maximum Likelihood method is a large sample test, only in large samples are the estimates the same as those produced by least Squares.

2) The ‘leverage effect’ refers to the way in which asset prices are more volatile when prices fall than when prices rise. This is because if a company is leveraged (has debt) then the fall in prices increases the company’s leverage ratio, which in turn increases the risk of the company. This produces a rise in the volatility of the asset. If prices rise the riskiness is reduced.

3) The autoregressive conditional heteroskedastistic (ARCH) effect refers to the existence of patterns in the heteroskedasticity, often involving volatility bunching. This is sometimes known as autocorrelation of the heteroskedasticity, as some factor is causing the error variance to follow a pattern and that factor needs to be included in the model specification. It is particularly prevalent in the finance literature as ARCH effects are viewed as a way of modelling risk.
4) This is a GARCH(2,1) effect, in which there is a single ARCH term and two lags of the conditional variance. We would expect all the terms to be positive, as they are variances. If any terms are negative the model is invalid so requires respecifying.

5) The GARCH model is generally better than an equivalent ARCH model, as it is more parsimonious and thus less chance of collinearity between the lags. This can be shown by the following process:
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(2)
  This process of subtracting one from the lags in the above GARCH model continues for ever higher amounts. Equation (2) is then substituted into (1). This produces:
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 An infinite number of substitutions produces:
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 Hence the GARCH(1,1) model can be written as an ARCH model (as β is less than one, when raised to the power of infinity it equals zero.) with an infinite lag length.
6) The equation for the difference between the conditional variance and the squared residual at time t is:
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 Substituting this expression into the GARCH(1,1) equation gives:
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This is an ARMA(1,1) process for the squared residual.
Lecture 10
1) Asymmetric adjustment needs to be included because of the leverage effect noted earlier among asset returns. When an asset falls in value, this increases the risk of the asset, as it increases the leverage or gearing ratio, making the asset more risky and increasing the volatility of the asset. Thus a negative shock should produce greater volatility than an equal positive shock.
2) In the GJR model, the asymmetric adjustment is incorporated through a dummy variable that takes the value of 1 if the shock is less than 0 and 0 otherwise.
3) In the GJR model, the non-negativity constraint requires that the coefficients on the error term squared and dummy variable are greater than 0, the other coefficients remain the same.

4) i) The model does suffer from asymmetric adjustment because the t-statistic on the dummy variable is significant.

ii) When the shock is positive, the conditional variance is 0.92+0.006+0.27 = 1.20. For a negative shock it is 0.92+ 0.006 + 0.27+ 0.011= 1.31.
5) In this class of models, the conditional variance enters into the conditional mean equation as well as the usual error variance part.
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 If yt is assumed to be an asset return, then in effect the first equation suggests that the mean return is dependent on the risk, if the parameter δ is positive and significant, then it means that the mean return increases when there is greater risk, in effect δ can be interpreted as a risk premium

7) The main use of the GARCH specification is to ensure that any ARCH effect is specified in a model, this ensures the model is well specified and there is no problem with omitted variable bias. In addition the GARCH models can also be used to directly model risk, determining the effects of risk on various asset returns.

The final use of this type of model is for forecasting the volatility of the conditional variance and therefore y. In general various types of GARCH model have been compared in terms of their forecasting performance, but there is little difference between the models.
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