Colorado Technical University

Cove: A Practical Quantum Computer Programming Framework
A Research Proposal Submitted to

The Graduate Council

In Partial Fulfillment of

The Requirements for the Degree of

Doctor of Computer Science

Department of Computer Science

By

Matthew D. Purkeypile

M.S., Computer Science

B.S., Computer Science

Colorado Springs, CO

February 20, 2008
Cove: A Practical Quantum Computer Programming Framework

By

Matthew D. Purkeypile

This Research Proposal is Approved

__

Bo I. Sandén, Ph.D., Professor of Computer Science
__

Robert W. Johnson, Ph.D., DCS, Professor of Computer Science
__
James A. Crowder, Ph.D., Sr. Principal System Engineer

Date Approved
Table of Contents
51.
Introduction

72.
Background and Related Work

72.1.
Quantum Computing

72.1.1.
Basics of Quantum Mechanics

182.1.2.
Introduction to Quantum Computing and Quantum Information

212.1.3.
Foundations of Quantum Computing

232.1.4.
Limitations of Quantum Computing

272.1.5.
Limitations of Simulating a Quantum Computer on a Classical Computer

292.1.6.
Quantum Algorithms

312.2.
Quantum Computer Programming

312.2.1.
Survey of Imperative and Object Oriented Quantum Computer Programming Languages

382.2.2.
Brief Overview of Select Other Quantum Programming Language Paradigms

422.3.
Framework Design

462.4.
Summary of Related Work

463.
Hypothesis and Proof Criteria

463.1.
Hypothesis

503.2.
Proof Criteria

514.
Methodology

514.1.
Continue Scanning Literature

524.2.
Setup and Deployment of Infrastructure

534.3.
Gathering Examples

534.4.
Development of Quantum Computer Programming Properties

544.4.1.
Ability to use Remote Resources

554.5.
Design of Interfaces

574.6.
Implementation of Interfaces via a Classical Simulation

594.7.
Proof that Framework Satisfies Functional and Usability Properties

594.8.
Analysis of Iteration

604.9.
Proposed Timeline

625.
Subset of Research Project: the Qubit

625.1.
Assumptions

635.2.
Examples of Qubit Use

635.3.
Qubit Functional Properties

635.3.1.
Limitations of Qubits

645.3.2.
Representation of a Qubit

645.3.3.
Operations on a Qubit

655.3.4.
Measurement of a Qubit

665.3.5.
Accessing a Remote Qubit

665.4.
Qubit Usability Properties

695.5.
Framework Design for a Qubit

725.6.
Implementation of a Qubit in C#

735.7.
Verification that the Design Satisfies the Properties and Design Rationale

735.7.1.
How Common Flaws are Avoided

745.7.2.
Verification of Functional Properties

755.7.3.
Verification of Usability Properties

765.7.4.
Design Rationale

785.7.5.
Examples

805.8.
Analysis of Qubit Project

815.9.
Comparison of Cove to Other Proposals

825.10.
Summary of Qubit Project

826.
Conclusion

837.
Appendix A: Source Code of Cove Base Library in C#

898.
Appendix B: Source Code of Cove Base Library in Python

959.
Appendix C: Electronic Resources

9710.
References

1. Introduction
While still years away from being commercially viable, quantum computers hold the power to carry out computations that are not feasible on current “classical” computers. Quantum computers are different from the classical computers we are familiar with in very fundamental ways- in some respects they represent a new computing paradigm. Like any computer though, quantum computers are of little value if there is not useful software to run on them. In order to immediately take advantage of quantum computers when they arrive, practical techniques to program them must be developed.
While the idea of quantum computing first appeared in the 1980’s, programming them did not receive much consideration until the 1990’s. Nonetheless, many of the existing proposals for programming quantum computers suffer from one or more of the following flaws, making them impractical or expensive for use in a typical commercial software development environment:

· Foreign techniques – the proposal utilizes techniques that are foreign to a majority of commercial developers. This includes the use of functional languages.

· Not scalable- the proposal only works well for small “snippets” of code, beyond that it becomes difficult to manage and understand. Visual languages and languages requiring formal proofs fall under this category.

· Proprietary language- over 8,500 languages have been developed to date [1], yet only a very select few see use in the commercial domain. Languages developed for the purpose of quantum computing are unlikely to be adopted because they lack the features or power of popular classical languages that are already in use.

· Difficult to integrate with existing software- it is unlikely that entire code bases will be rewritten solely to take advantage of quantum computers. Therefore any method to program quantum computers must integrate well with existing software.
· General usability/unconventional framework design- languages and libraries that typically see widespread use are as easy to use as possible and utilize many common conventions. Application Programming Interfaces (APIs) and frameworks that do not follow established conventions are thus difficult to work with and prone to being used incorrectly.

· Runs only on a quantum computer- it is likely that quantum computers will initially be a resource that is usable by a classical computer [2]. Consequently the programming techniques must integrate with classical computers somehow.

These various flaws that existing quantum computer programming proposals exhibit show that developing quantum programming techniques are far beyond a trivial task. David Deutsch, one of the fathers of quantum computing, said in his seminal 1985 paper: “Quantum computers raise interesting problems for the design of programming languages…” [3]. More than twenty years later, this is a challenge that has still not been adequately solved.
This paper outlines a proposal for the construction of a quantum computing framework that does not suffer from the flaws outlined. Frameworks give programmers the tools to solve certain problems [4], in this case the problem is how to program quantum computers. Specifically the deliverables for this research project will consist of the following:

· A list of functional and usability properties that a quantum computing framework should have. A list of this sort has not yet been encountered in the literature, making it difficult to determine what a quantum programming technique needs to accomplish.
· An object oriented design of a framework.
· Proofs and illustrations that show that the proposed framework satisfies the functional and usability properties.

· An implementation of the framework as a proof of concept, although this implementation may not necessarily be complete.

The core challenge lies not only in developing a method capable of programming a quantum computer, but in developing a method that is usable for the common commercial programmer. A majority of software is written by commercial developers, so if the use of quantum programming is going to be widespread, then this is the audience that must be targeted.
The remainder of the paper is organized as follows:

· Section 2, Background and Related Work- Covers the work related to quantum programming framework design. This generally falls into three categories: quantum computing and background (section 2.1), quantum computer programming (section 2.2), and framework design (section 2.3).
· Section 3, Hypothesis and Proof Criteria- Lays out what the research proposal aims to accomplish, as well as criteria for judging that it has been successfully completed.
· Section 4, Methodology- Details the steps that will be followed to carry out the project. This also includes a proposed timeline.
· Section 5, Subset of Research Project: the Qubit- Details a subset of the project that has been carried out to show that the project is viable and to give a concrete example of what the final project will look like.
· Section 6, Conclusion- Summary of this research proposal.
· Appendix A: Source Code of Cove Base Library in C# - The source code of the base library, which is interfaces and abstract base classes, is provided in C#- the primary implementation language.
· Appendix B: Source Code of Cove Base Library in Python – The purpose of providing the base library in two languages is to help illustrate that the design is not prohibitively tied to one language.
· Appendix C: Electronic Resources – Describes how various electronic resources which are outside the scope of this paper can be obtained. Resources include the complete source code, development web log (blog), and latest drafts.
2. Background and Related Work

There are several areas of computer science and physics that form the foundation for creating a practical quantum computer programming framework. Naturally, quantum computing itself forms the basis of what quantum programs run on. General quantum computing and quantum mechanics are covered in section 2.1 and provides the background for the following section. Section 2.2 covers work related to quantum computer programming, including a survey of different methods that have been developed for programming quantum computers. Since the focus of the proposal is the design of an effective method of programming quantum computers via a framework, section 2.3 covers work related to framework design.
2.1. Quantum Computing

As technology marches forward in accordance with Moore’s Law, it is estimated that quantum computers will appear in the year 2021, plus or minus five years [5]. Quantum computers operate fundamentally different than Turing machines which were introduced in the 1930s [6, 7], on which all modern computers are based. This section (2.1) provides the background necessary to understand quantum computation so that the programming challenges can be intelligently discussed.
2.1.1. Basics of Quantum Mechanics

A basic understanding of quantum mechanics is necessary to understand how quantum computers work, as well as to help comprehend their limitations and the difficulties constructing them. This section is not intended to give a thorough primer on quantum mechanics, but only the minimal introduction necessary to understand some key examples and how they pertain to quantum computation. As this paper is a research proposal for quantum computer programming and not a paper quantum mechanics or information, more complex topics including Hilbert spaces, quantum information protocols (such as superdense coding), evolution of quantum systems, and quantum states have little coverage in this paper, if at all. The reader is referred to [8-11] for a more thorough introduction to quantum mechanics as it relates to quantum computing.

At a quantum level nature is random: given an arbitrary state there is no way to determine with certainty exactly how it will evolve. This is fundamentally different than the Newtonian (frequently called “classical” in the literature) world we are familiar with where the evolution of a system can be determined given a particular state and forces acting upon it. A Newtonian example would be the orbit of a planet around a star: given a specific location we can determine where the planet will be at a future point in time. At the quantum level this determinism isn’t the case; as an example a photon can be in two places at once. The fact that things at the quantum level are not absolute and cannot be determined with certainty is deeply disturbing and confusing to many people. Einstein spent the later part of his life trying to disprove this quantum uncertainty, as he saw a certain aspect of quantum mechanics as “spooky action at a distance” [12]. As odd and unnatural as quantum mechanics may seem they’ve been experimentally proven, even with experiments that can be performed at home [13].
Classical physics are familiar to us because they govern what we see in our daily lives. In this classical world, given the state of a system and the forces acting upon it we can predict with certainty its future state. For example, if one throws a ball up into the air with a certain amount of force, one can predict how long it will take to fall back to Earth. In this view of the world things are completely deterministic- there is no randomness in the world. Taking this view further, if we somehow had a computer that could track every bit of matter and all the forces acting upon them then the Universe would be completely predictable. Under this worldview the only thing that keeps the Universe from being predictable is the shear complexity of the system.

This classical view of the world lasted for hundreds of years until the late nineteenth and early twentieth centuries [12]. It was at this time that the quantum view of the world was uncovered. If the classical view can be described as determinism, then the corresponding description for the quantum view is indeterminism. At the quantum level nature itself is unpredictable- identical situations can lead to different outcomes. Furthermore, we cannot even gain complete knowledge of certain systems. As an example Heisenberg’s famous uncertainty principle states: “we cannot know the precise position and momentum of a quantum particle at the same time” [12], illustrating that we cannot obtain complete knowledge of a system.
Perhaps even stranger than not being able to measure both position and momentum of a particle is the fact that particles can literally be in two places at once. This is commonly illustrated by the two slit experiment that will be detailed in this paper and shows that a photon can pass through two slits at once. The only catch is that as soon as we try to observe the particle it is said to “collapse” into a single position [14].
This term of “collapsing to” a particular state is taken from what is known as the Copenhagen interpretation of quantum mechanics, and is a popular and well know view. Although not as popular, another interpretation of quantum mechanics is the many worlds interpretation, first proposed by Everett in 1957, with objections by famous physics such as Niels Bohr [15, 16]. In the many worlds interpretation instead of the collapse the universe splits, and what we observe is in one of those branches of the split. This means that the universe is constantly splitting, and as a result every possible outcome exists in a branch. While not as popular as the Copenhagen interpretation, the many worlds interpretation is advocated by one of the fathers of quantum computing, David Deutsch [3, 17]. In fact he sees it as the obvious interpretation of quantum mechanics[17]. The many worlds interpretation is also the one the author subscribes to, although to be more consistent with the popular terms in the literature the term of “collapse” will be used throughout the paper when referring to the outcome of a quantum measurement.
The Bohr model of the atom that many students learn in high school is easy to understand yet contains a serious deficiency. The deficiency is that it does not take into account the uncertainty of the locations of the particles that make up an atom, such as electrons. In the Bohr model electrons orbit the nucleus of the atom much like a planet orbits a star [12, 18]. The reality is that there is not a particular location of where the electron is, but merely a cloud of probability indicating where it is likely to be [12].
[image: image1.png]

Figure 1. Bohr model of a heavy hydrogen (deuterium) atom where all particles have absolute locations. The solid green circle is an electron, solid blue a neutron, and solid red a proton. The light green circle represents the orbit of an electron around the nucleus.
[image: image2.png]

Figure 2. The more accurate probability distribution for the location of the particles of a heavy hydrogen (deuterium) atom. The darker the shade the higher probability that the particle has of being in the location when observed. The shaded green outer circle is the probability distribution for the electron. The shaded blue and shaded red represent the locations of the neutron and proton, respectively. Based in part on an example in [18].
An often used example in illustrating quantum weirdness is a photon of light. When a photon is observed it acts like a particle, in the absence of observation it acts more like a wave. When people talk about the dual nature of light, it is the wave and particle nature of light they are referring to. This dual nature has been experimentally verified by what is known as the two slit trick, called so because light passes through two slits in a plane. The two slit experiment is also the example often used in illustrating these two properties of light.

The following example of the two slit experiment is based on the example given in [12]. In the two slit experiment we take a light source that emits a single photon at a time. The photon is then shot at a plane that has two slits in it. Behind the plane is a photon detector.

[image: image3.png]

Figure 3. Setup of the two split experiment. On the left is a photon emitting source, which is emitting photons. These photons are fired at a plane with two slits in it. The photon detector is on the far right.
When the photons are not observed going through the splits, they act like waves. In this sense the photon can be considered to be going through both splits at the same time. This would be much like dropping a rock in a pond- the waves would radiate outward and each wave would pass through the two slits. Outward from each of the slits a new set of waves radiates. These waves interfere with each other and create an interference pattern on the photon detector. On the photon detector where photons are detected the waves reinforce each other, where none are detected they cancel each other out. It is this constructive and destructive interference of waves that can be utilized for computation, as will be later shown. It should be noted that this isn’t due to multiple photons going through the slits. If the emitter is slowed down to one photon at a time then the result is the same- an interference pattern.
[image: image4.png]

Figure 4. Two slit experiment when the photons are not observed going through the splits. Note the interference pattern on the photon detector due to the waves reinforcing or cancelling each other out.
An interesting thing happens if we try to observe the photons going through the slits: in this case the photons will only go through one slit or the other. When observed the photons act like particles instead of waves. Since each photon now goes through one of the slits there is no longer an interference of wave patterns. Instead we will only see two areas on the photon detector where each photon hits. In this case the image of the photon is more like sand is being poured through each slit instead of waves. As soon as we stop trying to record which slit the photon goes through the interference pattern returns.

[image: image5.png]

Figure 5. Two slit experiment when observing the photons going through the slits. Each photon is detected only going through one slit or the other, not both.
The idea of interference of waves when not observed can be expanded to illustrate something that cannot be done classically. A beam splitter can be placed in front of the photon source. This splitter will randomly send the photon in one of two possible directions where a photon detector is placed. The photon detectors observe the photons, so the photons behave like particles instead of waves. (As long as the path of the photon can be determined, it is considered an observation and thus cannot be in two places at once.)
[image: image6.png]Detector

Jonaiea

Figure 6. Splitting a stream of photons. The photons are observed by the detectors.
If the detectors are removed and the photons are not observed, then the behavior reverts to that like a wave. In this case the photon can be considered to travel both paths. In the real world the photon will eventually be observed, so we are only interested in the case of it not being observed in the theoretical sense at this point.

If the stream of photons are split twice without observing them along the way they end up only being detected on one of the detectors. This is because the stream will act like waves- for one of the paths they will cancel each other out and reinforce the other path. This is only possible because of the wave like behavior when not being observed- this concept plays an important role in quantum computation, as will later be shown in the quantum coin toss example. If an observation is placed before the detectors then the stream again acts like particles and the photons will be evenly distributed between the two detectors.
[image: image7.png]Up + Down = Not Detected

Detector

Right
/

Left Down

sy

Right + Right = Detected

Jonaiea

Figure 7. When split twice without observing the stream of photons will only be detected at one of the two detectors. The photons are not detected at the top detector because the possibilities have canceled out that path. The direction is rotated left by 90 degrees if the beam splitter alters the direction of the beam- else there is no rotation. The mirrors (grey lines) reverse the direction. This is why the results after the first beam splitter (lower left red bar) are “Left” (rotation) and “Up” (pass through). This is based of the similar example in [19].
Dirac notation is often the notation used to express states in quantum mechanics [10], and by extension quantum computing. In Dirac notation vectors are expressed using “kets”. So the vector “a” would be expressed as
[image: image8.wmf]a

. Dual vectors are expressed using “bras” so the dual vector “b” would be expressed as
[image: image9.wmf]b

. In this paper vectors, and thus kets, will be more frequently used. Dirac notation is used because it is more compact than the corresponding matrix representation. The matrix representation represents the possibilities of the qubit being in the particular state when observed. For a single bit the top most entry in the matrix represents the probability of being collapsing to state 0, the second entry is the probability of collapsing to state 1. For classical bits the probability is 1 that it is in a particular state, as a bit is either one or zero and thus can be expressed in matrix form (matrices will be enclosed in brackets in accordance with the notation in [20]):
	
[image: image10.wmf]ú

û

ù

ê

ë

é

=

0

1

0

	
[image: image11.wmf]ú

û

ù

ê

ë

é

=

1

0

1

Figure 8. Matrix representation of the bits 0 and 1.
Since the entries in the matrix are probabilities, they must add up to 1, as in the case of the above example.
Qubits are the smallest unit of quantum information. The smallest unit of information in a classical system is a bit. Qubits are different than bits and probabilistic bits, in that the entries in the matrices as describing the state are complex numbers. Recall that a complex number takes the form of a + bi, where a and b are real numbers and i is the imaginary part where i2 = -1, thus i is sometimes called the square root of -1 [21]. Complex numbers can also be drawn on the complex plane, sometimes also called the Argand plane. In this plane the x axis represents the real part (a) and the y axis represents the imaginary part (bi) [21].

[image: image12.png]

Figure 9. The complex plane (Argand plane) showing two example complex numbers. Real numbers are a subset and fall on the x axis.
For qubits the squares of the absolute values of those complex numbers must add up to 1. The absolute value of a complex number is defined as
[image: image13.wmf]2

2

b

a

+

when given the complex number
[image: image14.wmf]bi

a

+

 [21]. Note that if there is no imaginary component of the complex number (0i) then the absolute value is just a,
[image: image15.wmf]a

a

a

=

=

+

2

2

0

. Thus the general state of a qubit can be expressed in Dirac notation and matrix form as, where the complex numbers α0 and α1 are often referred to as the probability amplitudes.

[image: image16.wmf]ú

û

ù

ê

ë

é

=

+

=

1

0

1

0

1

0

a

a

a

a

y

[image: image17.wmf]1

2

1

2

0

=

+

a

a

Figure 10. General state of a qubit, from [22]. α0 and α1 are complex numbers.

	
[image: image18.wmf]ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

+

=

0

1

0

0

1

0

i

	
[image: image19.wmf]ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

+

=

1

0

0

1

0

1

i

Figure 11. A qubit in Dirac and matrix notation [9]. It is in each state absolutely (no superposition).
	
[image: image20.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

+

2

1

2

1

1

2

1

0

2

1

	
[image: image21.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

=

-

2

1

2

1

1

2

1

0

2

1

Figure 12. A qubit put in superposition via a Hadamard operation. The left is from the starting state of |0> and the right is from the starting state of |1>‌. The imaginary parts of the complex numbers have been omitted in this case since they are 0i.
This general state can be expanded to n qubits as well, where each possibility will be preceded by a complex number, with the restriction that all squared absolute values of the complex numbers add up to 1. It is important to point out that these complex numbers cannot be extracted- doing so collapses it to one of the two possible values based on their probabilities [22]. The key points are that the probability amplitudes of all possible states are interrelated and when a qubit is observed it will probabilistically “collapse” to one of the possible states. For a more in depth explanation of qubits in the context of computers the reader is referred to [22].

This matrix notation becomes cumbersome when there are multiple (qu)bits, as there will be n2 entries in the matrix, where n is the number of (qu)bits [10]. A matrix is not complete without all of the entries, hence the large number of zero entries. In Dirac notation the zeros can be left off, making it a more concise notation. As can be seen, the matrix form quickly becomes cumbersome for more than a (qu)bit or two:

[image: image22.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

+

+

+

=

3

2

1

0

3

2

1

0

11

10

01

00

a

a

a

a

a

a

a

a

y

Figure 13. Abstract representation of two qubits. In Figure 15 and Figure 15 the probabilities are 1, meaning that the other members can be left of in Dirac notation, but not in matrix form.

	
[image: image23.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

0

0

0

1

00

	
[image: image24.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

0

0

1

0

01

	
[image: image25.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

0

1

0

0

10

	
[image: image26.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

1

0

0

0

11

Figure 14. Two qubits represented in Dirac notation and matrix form.
	
[image: image27.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

0

0

0

0

0

0

0

1

000

	
[image: image28.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

0

0

0

0

0

0

1

0

001

	
[image: image29.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

0

0

0

0

0

1

0

0

010

	
[image: image30.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

0

0

0

0

1

0

0

0

011

	
[image: image31.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

0

0

0

1

0

0

0

0

100

	
[image: image32.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

0

0

1

0

0

0

0

0

101

	
[image: image33.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

0

1

0

0

0

0

0

0

110

	
[image: image34.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

1

0

0

0

0

0

0

0

111

Figure 15. Three qubits represented in Dirac notation and matrix form.
Not only are strings of (qu)bits represented by matrices or Dirac notation, but operations can be expressed as matrices also and applied to bits:
	Not of 0
	Not of 1

	
[image: image35.wmf]1

)

0

(

=

not

	
[image: image36.wmf]0

)

1

(

=

not

	
[image: image37.wmf]ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

1

0

)

0

1

(

not

	
[image: image38.wmf]ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

0

1

)

1

0

(

not

	
[image: image39.wmf]ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

1

0

0

1

0

1

1

0

	
[image: image40.wmf]ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

0

1

1

0

0

1

1

0

Figure 16. Equivalent forms of performing a NOT operation on a (qu)bit in Dirac notation and matrix form [11].
When a quantum system is in more than one state at a time it is said to be in a superposition of states. This superposition will exist until the system is observed, at which time it will randomly “collapse” to a particular state. To express the entire system in superposition the probability amplitudes of particular states (which are complex numbers) are placed in front of each states. Since these are probability amplitudes, to get the actual probability of collapsing to a particular state one must square the absolute value of them. The absolute value of a complex number without an imaginary part is just the real component, so in this case we can just square the number. Thus the following is an example of a single qubit with a 50% chance of collapsing to
[image: image41.wmf]0

 and a 50% chance of collapsing to
[image: image42.wmf]1

:
[image: image43.wmf]1

2

1

0

2

1

+

. Note that the odds are 50-50 because
[image: image44.wmf]2

1

2

1

2

=

÷

ø

ö

ç

è

æ

. Due to the fact that the amplitudes are absolute values that are squared, these amplitudes values can be negative and the result is still 50-50.
In the quantum coin toss example laid out later in this section, “heads” and “tails” are expressed within the kets of Dirac notation because they are each one of the possible states of the system, and these possible states are physically represented as vectors. For the purpose of the quantum coin toss example a deeper understanding of the notation is not required. A more detailed description of Dirac notation involves Hilbert spaces (a finite dimensional vector space over complex numbers is an example [9]) and other concepts more related to linear algebra and physics than programming languages, which is the focus of this paper. Consequently the reader is referred to [10] in particular for a more detailed explanation of Dirac notation, and [20] for linear algebra.
Even though nature at the quantum level is random, it is not random in the way most people would think- observation, or lack thereof, plays a key part. A coin toss is a good example to illustrate this random behavior. The coins we are familiar with in everyday life can be referred to as classical coins. Each toss of the coin is independent of all previous tosses. Additionally it does not matter if one observes the result of the toss or not since observation has no effect in a classical toss. In mathematical terms a classical coin is described by the following probability:

[image: image45.wmf]5

.

0

)

(

5

.

0

)

(

=

=

tails

P

heads

P

Figure 17. Probabilities of outcomes of an even coin toss.
Yet at the quantum level things are not described by simple probabilities as in the above classical coin. Instead their behavior is described by probability amplitudes, which can be thought of to correspond somewhat to the “waves” of a particle. A coin described by probability amplitudes can be a quantum coin. The quantum coin can be specified using Dirac notation:

[image: image46.wmf]1

0

=

=

tails

heads

Figure 18. Labeling of heads and tails on a qubit. The labeling is arbitrary.

[image: image47.wmf]tails

heads

tails

tails

heads

heads

2

1

2

1

2

1

2

1

-

+

a

a

Figure 19. Quantum coin after one toss starting from both heads and tails, specified in Dirac notation. The odds are still even of being heads or tails.
To get the chances of a particular event happening at any point, we again square the absolute value of the complex number coefficients. As was mentioned earlier
[image: image48.wmf]5

.

0

2

1

2

=

÷

ø

ö

ç

è

æ

, so we see that the coin still has a fifty percent chance of being heads or tails after one toss. Thus the quantum coin is not biased- just like a classical coin. It has an equal chance of being heads or tails after one toss. So tossing a coin once and observing the result is the same for a quantum and classical coin: fifty percent chance of heads, fifty percent chance of tails.
It should be noted that the quantum coin is tossed by what is referred to as a Hadamard gate [11]. The primary purpose of the Hadamard gate is to put a qubit in a superposition as in the example and to take them out of superposition to get the result [19]. As a result it is a quantum gate that is frequently encountered, and will be discussed in more detail later on in the paper.
It is when we don’t observe the first quantum coin after a toss that things begin to get strange. If we toss a classical coin twice it will still be heads or tails with equal probability. When a quantum coin is tossed once without being observed, then tossed again without observation the result is always the same after observing the coin after the second toss- heads. This can be worked out mathematically and is the equivalent of the splitting the beam of photons twice in the example described earlier in this section.
After the first coin toss from heads:

[image: image49.wmf]tails

heads

heads

2

1

2

1

+

a

After the second coin toss:

[image: image50.wmf]heads

tails

heads

tails

heads

tails

heads

tails

heads

tails

heads

heads

=

+

=

÷

ø

ö

ç

è

æ

-

+

÷

ø

ö

ç

è

æ

+

=

÷

ø

ö

ç

è

æ

-

+

÷

ø

ö

ç

è

æ

+

0

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

a

Figure 20. Working out mathematically that the result of two flips of a quantum coin, without observation after the first flip, always has the same result. The label “heads” is arbitrary.
It should be noted that this problem is symmetric- heads and tails are merely labels. The key point is that it can be constructed where only one of the two possible outcomes is seen after the second flip.
Results such as this are not possible with a classical coin toss. It is this interference of probability amplitudes that makes these quantum probabilities different from the statistics most people are familiar with. As pointed out, this also means that the various tosses of a quantum coin are not independent. It is this power of nature at the quantum level that allows quantum computers to efficiently solve problems that are unsolvable on classical computers.

2.1.2. Introduction to Quantum Computing and Quantum Information
Today’s common desktop computer and its ancestors are known as “classical” computers. The term “classical” will be used frequently throughout this paper to distinguish them from quantum computers. While the speed of modern classical computers has increased in accordance with Moore’s Law, fundamentally they operate no different than Alan Turing originally laid out in the 1930s [7]. The fundamental unit of information on a classical computer is a bit. A bit can be one of two possible values, typically referred to as 0 or 1. Occasionally in the literature of quantum computing one may come across the term “cbit” instead of bit. “Cbit” stands for “classical bit” [22].
The behavior of nature at the quantum scale, as outlined previously, can be utilized in order to perform computations on a machine known as a quantum computer. The fundamental unit of information on a quantum computer is the quantum bit, which is typically referred to as a qubit, or sometimes a qbit [22] A qubit can take on a value of 0, 1, or a combination (superposition) of 0 and 1. Throughout this paper the terms “bit” and “qubit” will be used instead of “cbit” and “qbit” when referring to the classical and quantum units of information.
These various states of a qubit should not be confused with a ternary (3 state, also called trinary) computing system. In a ternary system values can be one of three possible states. When qubits are in a superposition of 0 and 1 they have probabilities of being either 0 or 1 when observed. As an example a qubit may have a 10% chance of being in a 0 state when observed. This means that on average it will be a 1 state in 9 out of 10 observations, but 0 in the remaining observation. Therefore a quantum program may produce different results from execution to execution. A ternary system on the other hand will always produce the same result when given the same input. It is important to make the distinction between a random result selected, in the case of a quantum computer, and that of random input influencing the execution of a classical program.
[image: image51.png]Quantum Program

Classical Program with Random Input

(includes o
ogram { /
random) o Resuit x

Figure 21. A quantum versus a classical program. Note that the quantum computer generates multiple results, but only one of those is selected as becomes the output. Once the classical program is seeded with random input its execution and result are deterministic. As a result, when seeded with the same input a quantum program may generate different results from execution to execution, but a classical program will execute the same given the same input.
One might think that there is no difference between a quantum computer and a probabilistic classical one, but this isn’t the case. The primary difference is that the possibilities in a quantum system are allowed to constructively and destructively interfere with each other- something that does not happen in a probabilistic classical system. The quantum coin toss in section 2.1.1 is an illustration of this as previous tosses may influence future ones. Thus the qubit is fundamentally different than any classical unit of information.
	
	Bits (classical)
	Qubits (quantum)

	Subsets of n bits
	Always have states
	Generally have no states

	Can state be learned from bits?
	Yes
	No, measurement collapses

	To get information
	Look at them
	Measure them

	Information acquired
	X
	x with probability
[image: image52.wmf]2

x

a

	State after information acquired
	Same, x
	Different,
[image: image53.wmf]x

, due to collapse

Figure 22. Comparision of bits and qubits. This is a subset of the table given in [22].
It should also be noted that qubits are continuous [11], while bits are discrete. This means it takes an infinite amount of classical information to precisely represent the state of an arbitrary qubit [11]. While largely outside the scope of this paper, the Bloch sphere helps to illustrate the difference between quantum and classical units of information:
[image: image54.png]bit

0e

probabilistc bit
0

Figure 23. The difference between bits, probabilistic bits, and qubits. Based on the illustration in [10], with the Bloch sphere image from [10]. Physically, the Pauli gates (detailed in Operations on a Qubit, section 5.3.3) are rotations about the three axis’s in the Bloch sphere- hence the names X gate (not), Y gate, and Z gate. One can see from the illustration how a rotation about the X axis would perform a not operation.
There are a few features unique to qubits that should be mentioned. These topics are outside the scope of this paper, so the reader is referred to the references for more detailed explanations.
· No cloning theorem - an arbitrary quantum state (qubit) cannot be copied [9-11]. This plays into the limitations of quantum computing, which are discussed in section 2.1.4.
· Quantum teleportation – allows for the state of a qubit to be transferred from sender to receiver. The state of the sender’s qubit is destroyed, so it does not violate the no-cloning theorem [9-11].

· Superdense coding – sending one qubit transmits two bits of classical information [9-11].
While the focus of this paper is not on quantum computing hardware, it is worth briefly mentioning in order to illustrate the challenges that lie ahead in implementation and why quantum computers are expected to be a number of years away. As of 2006 quantum experimental ion-trap quantum computers have been built with 8 qubits and nuclear magnetic resonance (NMR) quantum computers have been built with up to 12 qubits [23]. However the scalability of these two approaches is questionable. More promising, and perhaps likely to surpass NMR and ion-trap quantum computers is solid state quantum computing using diamonds [24]. Since there is also considerable infrastructure in place for solid state methods, this may likely be the route to commercial quantum computers [23]. While it may be disappointing to think that systems of only up to a dozen qubits have been built in the 20 years since the idea was introduced, many people feel there are breakthroughs on the horizon [5]. One possible area for improvement is the use of quantum multicomputers: small quantum computers linked together to solve a problem [25]. This avoids the problem of creating a single large quantum computer.
Quantum computing exploits the nature at the quantum level in order to carry out computation. There is another area in computer science that also exploits nature at the quantum level: quantum cryptography. One of the first methods outlined is the Bennett-Brassard scheme which utilizes quantum mechanics to generate a key [26]. This type of method is typically called “quantum key distribution”. Unlike many forms of modern cryptography, quantum cryptography is not based on mathematically “hard” problems such as factoring, but on the properties of nature. Since this proposal focuses on quantum computer programming, this topic will not be explored further. For further details on the subject the reader can consult [26].
2.1.3. Foundations of Quantum Computing

This section covers the papers that presented the key ideas within the field of quantum computing as they apply to programming quantum computers. Quantum circuits are not covered as they lie at a lower level than is generally necessary for quantum computer programming. Tangent areas such as evolution of quantum circuits via genetic programming [19] are also not considered.

In 1982 Feynman implicitly stated that a computing device would need to operate based on quantum mechanics in order to simulate a quantum system efficiently [27]. His proposal was for a “universal quantum simulator” [3, 28]. Although he later expanded his ideas [29], his initial proposal was not a computer as laid out by Turning [9]. The universal quantum simulator Feynman proposed can only be programmed by preparing it in a suitable physical state. One important point Feynman made at this time was that a quantum system cannot be simulated on a classical computer without an exponential slowdown in efficiency [9].

It should also be mentioned that Benioff constructed a model of computation utilizing quantum kinetics and dynamics [30]. Deutsch argued that this approach could be simulated perfectly by a classical Turning machine [3]. As a result Benioff’s model of computation is not considered to be the founding work of quantum computing, but rather utilizing quantum mechanics to perform classical computation [30]. A similar idea well covered in the literature is superdense coding- transmitting of a single qubit relays two bits of classical information [9-11].
The field of quantum computing is largely considered to founded by David Deutsch in 1985 with his paper Quantum theory, the Church-Turing principle and the universal quantum computer [3]. As previously mentioned, Feynman pointed out that a classical computer could not efficiently simulate a quantum system [28]. However, Feynman did not explicitly state that a quantum computer could efficiently perform a class of computations that are not practical on a classical computer- he merely alluded to it. In his paper Deutsch explains how a quantum computer can perform computations that are inefficient on classical systems- computations that would take so long on classical computers as to be considered impossible with classical technology that will be developed in the foreseeable future. At the time of his paper, quantum computers were viewed as something of an oddity for two reasons. First, it was unknown (and still unknown according to some) if a practical quantum computer could be built. Secondly, there were no practical algorithms to take advantage of the characteristics of a quantum computer. Although Deutsch laid out an algorithm in this paper where a quantum computer could outperform a classical one, its practical use is limited. The algorithm he laid out is commonly referred to as Deutsch’s algorithm. This later changed when Peter Shor figured out how to efficiently factor integers using a quantum computer [31]. Factoring integers is the basis of many commercial public key (asymmetric) encryption algorithms, so at this point Deutsch’s work became more significant because it could be used to tackle what are considered hard problems with classical techniques. Deutsch is a physicist [17], so naturally his paper focuses more on the mathematical and physics aspects of quantum computing. Deutsch also pointed out [3] that a qubit is a closer representation of nature than a bit. As he points out at the end of his paper, “Quantum computers raise interesting problems for the design of programming languages…”

Quantum computing is similar to parallel and distributed computing in some aspects. Both attempt to solve a problem by essentially trying multiple solutions in parallel. This is done through use of the extra states in a qubit on a quantum computer. With parallel processing attempts are tried until a solution is found. So if there are one thousand possible solutions to try, then in the worst case all one thousand will be attempted. This isn’t the case with a quantum computer- a quantum computer can execute all of those attempts at once. A quantum computer’s power increases by a power of two for each qubit added. Furthermore a quantum computer does not require the communications and partitioning overhead that a parallel or distributed attempt at a solution requires. As an example, take a 32 qubit quantum computer. A quantum computer is able to attempt all the possibilities that those 32 qubits can represent at once: 232, or 4,294,967,296. So to achieve the same computational power a classical solution would require some combination of processors, systems, and/or attempts that equals this number. Taking this even further, quantum computers with hundreds or thousands of qubits have the ability to solve problems that are not viable for classical solutions.

A simple illustration of the extra power of quantum computation is Deutsch’s algorithm [11], which he laid out in his ground breaking paper. The problem is that there is a function, f(x), and the goal is to compute the result of f(0) xor f(1). Obviously, on a classical computer f(x) would have to be calculated twice- once to compute f(0), and a second time to compute f(1). Deutsch’s algorithm utilizes the power of quantum computation to solve the problem while only evaluating f(x) once, a feat that is impossible on a classical computer. Deutsch’s algorithm utilizes the quantum mechanical property of interference as illustrated in the coin toss example in section 2 of this paper in order to achieve the result when only querying the function once. A more detailed explanation of Deutsch’s algorithm involves quantum circuits, and as such will not be covered here. For an detailed explanation the reader is referred to [11].

In 1996 Knill introduced his conventions for quantum pseudo code [2]. Pseudo code is often used as a concise way to express algorithms within computer science without becoming tied to syntax or implementation restrictions. As Knill points out in his paper, up until this point there were no conventions for quantum pseudo code. This meant that until this time algorithms were written typically in mathematical notation, which is geared towards mathematicians and physicist, making them difficult to understand for software developers. Although it is still common to see quantum computer algorithms expressed in mathematical notation this pseudo code convention was a good step in moving quantum computing towards mainstream computer science. Quantum circuits are also another method sometimes used to illustrate quantum algorithms. What is important about Knill’s paper is not just the pseudo code convention introduced, but on the practical nature of the machine which it will operate on. In the introduction he states:

It is increasingly clear that practical quantum computing will take place on a classical machine with access to quantum registers. The classical machine performs off-line classical computations and controls the evolution of the quantum registers by initializing them in certain prepareable states, operating on them with elementary unitary operations and measuring them when needed….

He calls a machine that behaves in this manner a quantum random access machine (QRAM) (see Figure 24). This combination of classical and quantum computing is now generally believed to be how the first commercial quantum computers will appear. Many of the proposed ideas for quantum programming covered in this paper also utilize the QRAM approach.

[image: image55.png]Logical representation
of quantum resources

Classical
hardware and
software

Code for elementary
quantum operations

Results of
mesurements

Quantum
resources 4
(1ocal or shared)’ !

Physical implementation
of quantum resources

Figure 24. Bettelli’s simplified illustration of Knill’s QRAM model [32].

Even though quantum computing was founded in the 1980’s, it largely remained a oddity until over a decade later when Shor introduced his factoring algorithm. It is now known that there are several important problems that can be solved more efficiently on a quantum computer. Some examples of these problems include:

· Integer factorization- this forms the basis of many commercial public key (asymmetric) cryptographic algorithms [31].

· Simulation of quantum systems [28].

· Protein folding [33].

· Reaction dynamics [33].

· Unsorted search [34].

· Quantum Fourier transform [10].

2.1.4. Limitations of Quantum Computing

Quantum computers are able to carry out computations that are not practical on classical computers. An example of this is simulation of a quantum system: for all but the smallest simulations the problem is too complex to execute on a classical computer, as there is an exponential slowdown of the simulation [9]. This exponential slow down makes a simulation of a quantum computer on a classical system impractical for more than a limited number of qubits. Even though quantum computers are able to carry out computations that are not feasible on classical computers, this increase in computing power does come with certain restrictions; those limitations will be covered in this section.

At an abstract level, quantum computers can be thought of as being able to carry out a computation for multiple inputs at once. It is this capacity for parallel processing that makes quantum computers powerful. There are several restrictions on quantum computers, the most noteworthy ones for classical programmers include: probabilistic output [8], non-observation [9], and reversible computation [35]. Each of these will be discussed in turn.

The first limitation is that the output of a quantum computer is probabilistic- running the same quantum program multiple times may generate different results, depending on the program. The result generated depends on the probability of the possible answers. In the quantum coin toss example covered earlier one of the possible results was heads one hundred percent of the time. The other possibility, tails, had a zero percent chance of occurring. For more complex algorithms the correct answer doesn’t always occur with a probability of one hundred percent, but the probabilities can be adjusted by varying degrees towards the correct answer. Although a quantum computer can carry out parallel computation, at the end one of those possibilities is randomly selected based on their probability amplitudes, and returned as the answer. In the quantum coin example, after one toss there is a fifty-fifty chance that it will be heads or tails after the first toss, and a one hundred percent chance of heads after the second. Once an answer has been obtained from a quantum program, through measurement, the only way to generate another one is to rerun the quantum program. Obtaining the answer through measurement can be thought of collapsing the system to a classical state. At this point the system can not be put back into the quantum state it was in before the measurement. In effect there is no way to “undo” receiving the answer through observation; the only option is to rerun the program.

A quantum computer may not seem very useful if the answer is essentially random. Even so, there are tricks to skew the probabilities towards the correct answer. In the quantum coin toss example, by flipping the coin twice without observation we can obtain heads every time. This skewing of probabilities towards the correct answer utilizes what is known as constructive interference, while the minimization of the incorrect ones is destructive interference [36]. These concepts are central to more complex quantum algorithms. In some cases the result returned from the quantum algorithm can be easily and efficiently checked with classical means to determine if it should be return. In the case of factoring, checking the result to see if it is correct is easily and efficiently done with classical techniques.
Another limitation on quantum computing is that it cannot be observed while carrying out a computation. Observation (also measurement) is used in this case as physicists use it: the quantum computer cannot interact with the outside environment when carrying out its computation. The fact that the quantum computer must be isolated is a large part of what makes constructing quantum computers so hard. When a system is observed, it is said to “collapse the state vector” [9]. All of the parallel computations that were being carried out suddenly collapse into the one randomly selected answer as previously described. Thus a quantum computer can not be queried as to its state while in the middle of the computation. This is why in the quantum coin example we must not observe it after the first toss in order to get the result after the second toss to always be heads. If we observe it after the first toss, it will collapse to head or tails, and then be heads or tails after the second toss with equal probability. By not observing after the first toss constructive interference is what makes heads the result after the second toss. Expanding this further, it is not possible to determine what the probability amplitudes are for the various possible states before collapse. Nonetheless, many classical simulations of quantum computers allow for this to be obtained to aid students in quantum computing and to help verify programs and the correctness of the simulation.
Along the lines of non-observation is what is known as the No-Cloning Theorem. The No-Cloning Theorem states that there is no operation that can produce a copy of an arbitrary quantum state [9, 11]. This prevents one from making a copy of an arbitrary quantum system and observing that copy to get around the problem of observation collapsing the system mentioned in the previous paragraph. Thus observation not only produces an answer, but the only way to obtain another answer is to rerun the computation- due to the No-Cloning Theorem there is no way to “undo” an observation.
The final limitation of quantum computers that should be mentioned is that the computations they perform must be reversible. Reversible can be defined as being able to recover all inputs given an output. Many of the operations carried out on a classical computer are not reversible. The AND operation is a simple example: if the result is 0 we do not know what the two inputs were, other than the fact they were not both 1. As an aside, computations that are reversible do not require any energy. Erasing of information is what requires energy and this is known as Landauer's principle [11, 35]. Thus the problem of heat being generated on today’s computers comes from the fact that information is constantly being erased. So if all computations on today’s computers were reversible then heat would not be an issue.
This is the reason that operations such as the controlled not, or CNOT, have arisen for quantum computers and are frequently used as examples when explaining quantum computation. A CNOT has two inputs. If the first input is 1 then a NOT is performed on the second input. There are two outputs- the first input with no changes, and the second input, with potentially a NOT performed on it. It is trivial to show that this is a reversible computation. It should be noted that this requirement of reversibility is related to the fact that the quantum computer cannot interact with the outside environment. If a computation is not reversible it will dissipate energy to the environment, which will betray the state of the system [35].

In the most general sense quantum gates can only evolve a quantum system using unitary transformations [26]- essentially transforming the system. This means that there no quantum operation that can transform the system to a smaller one. An example of something that would evolve the system to a smaller one is the AND operation: it has two input bits but only one output bit, meaning it transforms to a smaller state. So not only must the computation be reversible, but it must evolve its inputs into the same number of outputs. It should also be noted that because of the reversibility requirement the quantum AND operation operates on three qubits:
	Classical AND
	Quantum AND

	00 (0
	
[image: image56.wmf]000

000

®

	01 (0
	
[image: image57.wmf]010

010

®

	10 (0
	
[image: image58.wmf]100

100

®

	11 (0
	
[image: image59.wmf]111

110

®

Figure 25. Classical and quantum AND operations. For the quantum AND the AND functions on the first two qubits of the input with the result being in the third of the output. Note that unlike the classical AND, the Quantum AND is both reversible and operates on the same system (the output is the same size as the input). This example is a condensed version of the one given in [26].
This restriction of reversible computation may initially appear as a huge limitation because many programs and circuits on classical computers are not reversible. Nonetheless, it has been shown that any irreversible computation can be transformed into a reversible one [10].

Most languages today do not enforce these limitations needed for quantum computation. Furthermore, many of today’s popular languages were originally used on single processor systems. Consequently not much emphasis was made on parallel programming for these languages. Due to the fact that multiprocessor systems are becoming more common, today’s popular languages may be replaced by those that have been designed for parallel processing from the start. There are several languages being developed for multiprocessor systems. One or more of the languages may see mainstream use in the near future, and these languages include:

· Sun Microsystems’s Fortress [37] – Meant to be a high performance language for the same sort of applications that Fortran has been used for. Fortress is statically typed, allows for component reuse, and supports modular and extensible parsing- which allow for notation to be added to the language. The syntax of Fortress appears similar to Fortran and C derived languages including Java and Adobe’s ActionScript.

· Cray’s Chapel [38, 39] – The primary reason for the development of Chapel is to introduce high level language concepts for expressing parallelism. The parallel aspects of Chapel are largely based on previous solutions from Cray such as the MTA extensions of C. Chapel’s authors claim its prime serial language influences as C derivatives, Ada, and Fortran, which is evident by examining language samples. Unlike Fortress, which is statically typed, Chapel is not. In the spirit of Python this makes it easier for programmers by not forcing them to replicate algorithms for different types.

· IBM’s Experimental Concurrent Programming Language (X10) [40] – X10 enforces safety of several different kinds: type, memory, place, and clock. Unlike Chapel and Fortress, X10 is largely build upon a single language- Java. As such, the current implementation translates X10 to Java and is available on Source Forge. Furthermore an integrated development environment (IDE) for X10 has been developed for the Eclipse IDE.

· MIT’s StreamIt [41, 42] – Unlike the other languages listed here, it is designed as a special purpose language for streaming applications. The argument for this is that streams cannot be expressed naturally or eloquently enough in existing high level languages. While StreamIt may make it easier for programmers to handle streams, this also helps to limit its use. Commercial programmers typically encounter a wide range of problems to be solved, and learning a language to solve only a few of them often isn’t worth the time and effort required of the programmer.

Even though languages such as these are intended to be parallel programming languages, they are fundamentally different from quantum languages due to the advantages and limitations of a quantum computer. Even though a quantum computer may operate on a huge number of possible values, in the end only one of the potential results is selected as the output as outlined earlier in this section. Using parallel programming it is possible to achieve all possible outputs. Thus quantum computing can be looked at as a way to more easily operate on multiple inputs; this comes at the expense of only receiving one potential solution.
There is a startup company called D-Wave that claimed to demonstrate a 16 qubit quantum computer in February 2007 at the computer history museum in Mountain View, California. D-Wave has not disclosed how their quantum computer works, and rightfully are being viewed very skeptically by those in the field of quantum computing [43, 44]. Furthermore their quantum computer was not present at the demonstration- it was being accessed remotely. There have also been no press releases by D-Wave in the nine months after demonstrating their quantum computer [45]- hardly what one would expect about a commercial device that can break encryption commonly used on the Internet. As the late astronomer Carl Sagan has said, “Extraordinary claims require extraordinary evidence.” [46]. To date D-Wave’s evidence is lacking.

Quantum computers have the ability to carry out computations that are impractical on classical computers due to their ability to operate on multiple inputs at the same time. It is the three limitations outlined, probabilistic output, non-observation, and reversible computation, which contribute to making quantum computers difficult to implement and program. Due in primarily to the limitation of non-observation, it is generally believed that we will not see commercial quantum computers for at least a decade, if not longer.
2.1.5. Limitations of Simulating a Quantum Computer on a Classical Computer

It has been estimated that practical quantum computers will not appear for another 10 to 20 years or so [5]. Given that there will be no quantum computers for a period of time, we need a way to test various software techniques. In absence of an actual quantum computer, the only way to do so is to simulate a quantum computer on an existing classical machine. There will still be the exponential slow down on the classical system [9], but a simulation does allow programmers to write limited quantum programs. Being able to learn how to write good quantum programs before the introduction of quantum computers will eliminate the learning curve necessary to utilize quantum computers once they become a reality. It is also possible that quantum computers will be expensive and value resources when first realized, much like classical computers were at the time of their introduction. If this is the case then it becomes expensive to use them to learn the basic principles of quantum computation that can be simulated on a classical PC. Aside from the exponential slow down, there are other limitations one needs to be aware of when simulating a quantum computer on a classical one.
One area to be concerned about in simulating quantum computers is the round off errors that may occur. Numbers on a classical machine are discrete, and often of a fixed precision. The state of a quantum system can at times not be exactly represented using common classical data types. An example would be the representation of the square root of two. One needs to be aware of these possible rounding errors that could accumulate and make the classical simulation not reflect the reality that would occur on a quantum computer. Some existing approaches, such as Spector’s automatic quantum computer programming approach, enforce limitations to minimize these errors [19]. A qubit is represented by values in a continuous range, meaning that no finite discrete system such as a classical computer can precisely represent an arbitrary qubit [11].
Classical computers face an exponential slow down when simulating quantum systems because a quantum system can be in multiple states at once (superposition). For simplicity, consider that a qubit can be only in state
[image: image60.wmf]0

 or
[image: image61.wmf]1

 and not anything in between like they normally can. If there is a set of 7 qubits then the set can be in one of 128 (27) possible states. If these 7 qubits were in superposition, then all of these 128 states would need to be kept track of classically. Additionally, this represents the quantum system only at a particular instant in time- these states also need to evolve as the system evolves. Adding an additional qubit to a total of 8 means that the set can now be in 256 (28) states, and so on exponentially as we increase the number of qubits. If we remove the restriction of being absolutely in state
[image: image62.wmf]0

 or
[image: image63.wmf]1

 then things become even more complex. For a more detailed explanation of this example the reader is referred to pages 45-50 in [27].
This exponential slow down was recognized by Feynman, who in 1982 wondered what would happen if the computing device operated based on quantum instead of classical mechanics [27]. Deutsch expanded on this idea in 1985 to suggest quantum computers, as covered in section 2.1.3.
A quantum computer essentially carries out computations on an array of possibilities, yet only one of those possibilities is returned as a result- the one returned is randomly selected based on the probabilities of the possible outcomes. Consequently, repeated runs of the same quantum program may return different results [19]. It is impossible to see what the other potential answers are unless the program is run enough times to gather all possibilities. If one or more of the possibilities has a very low chance of being returned as the answer, then doing so may take many runs of the program.

Even though there are limitations simulating a quantum computer on a classical one, there is one area where there is an advantage. When the simulation is carried out it is possible for the user to examine what the possible answers are and their corresponding probabilities [19]. In other words they can examine the state of a quantum system. This eliminates the need for repeated runs of the program. Carrying out a simulation on a classical computer also allows users to do another thing that isn’t possible on an actual quantum computer: peek at the state of the system in the middle of computation. On a quantum computer this observation would collapse the system, making it impossible to resume the program without starting over. Since the limitation of no-observation isn’t a physical one in a simulation, it can be broke.
Both of these features, seeing all possible results and examining the state of the system during execution, may be useful to students of quantum computer programming in order to better understand the computation. Even though they may be useful, their use should be discouraged in all but the most elementary exercises since they are impossible on an actual quantum computer. The prime reason for discouraging these behaviors is that students and practitioners of quantum programming should not become accustomed to features that are impossible to implement on working quantum computers. Individual programming methods should not force programmers into methodologies the designer thinks are best, but preventing the use of impossible techniques does not fall under that realm. Nonetheless, existing simulations often provide these tools.
2.1.6. Quantum Algorithms

Quantum computer algorithms are important to the study of quantum computer programming techniques, as they are typically demonstrated by implementing some of these algorithms. In this section some of the more widely known algorithms are briefly covered. Some of these do little more than illustrate basic advantages of quantum computing over classical computing, while others covered have real world applications. Since the proposal is for quantum computer programming a not algorithms, only a brief introduction into the most frequently covered algorithms is necessary to better understand the code examples that follow.

Until the mid 1990s there were no known algorithms that utilized quantum computers to solve practical problems. The algorithms introduced earlier by people such as Deutsch and Jozsa illustrated the power of quantum computers [47], but didn’t utilize it for problems that had applications in the real world. Consequently quantum computing up to this point was viewed as something of a novelty. It was at this point that Peter Shor’s paper Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer [31] was published. In this paper Shor outlines algorithms for quantum computers that allow factoring and discrete logarithm problems to be solved in a polynomial number of steps, based on input size. The discrete logarithm and prime factorization problems are generally considered to be hard on classical computers, with no known efficient algorithms. As a result these two problems form the basis of many modern cryptographic systems, especially the integer factorization problem. Integer factorization forms the basis of the RSA cryptographic algorithm, which is a public key (asymmetric) algorithm. RSA forms the basis of many commercial communication algorithms [48]. If quantum computers become a reality, then Shor’s algorithm makes many modern commercial encryption systems obsolete. Due to their widespread use this has profound implications, not only for ecommerce, but perhaps for national security as well, because these systems based on these algorithms would be rendered obsolete. Their wide spread use would also make them difficult to replace, especially for legacy systems. Due to these consequences, a branch of cryptography called quantum cryptography has arisen in recent years. Quantum cryptography attempts to create cryptographic systems that base their security on the laws of nature as opposed to problems that are hard to solve, as most modern cryptographic systems such as RSA do [26].
Lov Grover also introduced an important algorithm for quantum computers in the mid 1990s, his algorithm for fast database search [34], commonly known as Grover’s algorithm. Shor’s integer factorization and Grover’s fast database search are largely considered to be the most important quantum algorithms to date. One or both of these algorithms are frequently covered in modern quantum computing texts [8-11, 26]. On a classical computer, searching through an unordered list of objects requires O(n) time. What Grover’s algorithm does is allow for this list to be searched in O(
[image: image64.wmf]n

) time. Furthermore, Grover’s algorithm is the fastest possible quantum algorithm for this problem. In his paper Grover also points out that this algorithm is likely to be easier to implement than other quantum mechanical algorithms.

While Shor’s and Grover’s algorithms are the most written about algorithms due to their practical nature, several others are frequently encountered in quantum computing literature. The reader is referred to the references for further details on these algorithms. Some of these other algorithms and a short description of what they accomplish include:

· Deutsch’s algorithm [3] – Allows for f(0) xor f(1) to be determined with only one query to f(x) using the concept of interference covered in the quantum coin toss example in section 2. A classical algorithm would have to query f(x) twice.
· Deutsch-Jozsa [47] – A more generalized version of Deutsch’s problem that solves f(x) for n bits instead of 1 as in Deutsch’s algorithm.

· Phase kick back [10] –The CNOT gate NOTs the second input bit if the first input bit is true. The result of this potential NOT along with the value of the first bit are the output, making the operation reversible per the limitations outlined in section 2.1.4. Phase kick back is an illustration of how the first input qubit in the controlled not (CNOT) gate can be effected. This is not possible in the classical implementation of the CNOT gate.

· Quantum Fourier transform [11] – The quantum version of the Fourier Transform.

· Generalized Simon’s algorithm [49] – An approach for finding a hidden sub group.

While the number of known algorithms that take advantage of the power of quantum computers is limited, the development of genetic programming techniques for quantum programming holds promise [50]. In particular, the evolutionary approach combined with the power of a quantum computer to carry out parallel computations could allow for quantum computation to solve hard problems in which a quantum algorithm does not yet exist.

While there have been several important quantum algorithm developed to date, development of more algorithms continues to be an area of intense research within quantum computing. The algorithms presented in this section are often implemented in proposed quantum programming techniques and can give good insight into how practical and readable the proposed techniques are. The sections that follow cover various quantum programming languages, which are illustrated using these algorithms.

2.2. Quantum Computer Programming

The programming languages examined in this section are divided into two categories: imperative and object oriented languages are covered in 2.2.1, while all others are covered in 2.2.2. Due to their popularity in commercial environments imperative and object oriented languages are examined separately since the proposal will focus on an object oriented approach. Imperative languages are examined along with object oriented languages because they have many traits in common, and in instances such as C/C++/C# the object oriented language has evolved out of the imperative one. Other techniques are covered for comparison purposes and to identify common themes through out a majority of quantum programming techniques.
2.2.1. Survey of Imperative and Object Oriented Quantum Computer Programming Languages

In the academic world a variety of languages are studied and used. But with the exception of a few applications, most languages utilized for commercial applications are written in imperative and object oriented languages. A partial list of these languages includes many that would be familiar to any commercial developer: Visual Basic, C#, Java, Python, Fortran, Cobol, and so on. For the power of a quantum computer to be utilized economically in commercial applications, the programming must be easy for existing commercial developers to learn and utilize. This is best done by piggy backing off of the languages and techniques they are already familiar with- this means that successful quantum languages for existing commercial developers will likely be related to one of more of these languages, or quantum frameworks (libraries) for these languages. It should be pointed out that the popularity of languages changes with time, so as new languages come into popularity their potential for quantum computing also needs to be kept in mind. Many of today’s popular languages were not designed to easily take advantages of multiple cores or processors. Consequently it is quite feasible that other languages that take advantage of these parallel processing capabilities will rise in popularity in the near future and be excellent candidates extending to carry out quantum computing.
The structure of quantum programming languages differ from existing classical languages in that the limitation outlined in section 2.1.4 must be enforced. Depending on the proposed approach, defiance of these limitations may be caught at compile time or at run time. The quantum languages typically include statements for initializing the quantum state of the system, manipulating it through (unary) operations, and finally measurement. When Knill’s QRAM approach is utilized these are frequently additions to some existing classical programming techniques.

As mentioned in section 2.1.3, Knill has introduced pseudo code conventions [2]. His pseudo code is based on imperative program techniques, as it utilizes variables and flow control statements based on that methodology. Within his paper he also provides several elementary examples of the use of his proposed pseudo code. As mentioned previously, the importance of Knill’s paper lies not necessarily in the proposed pseudo code conventions, but in the use of his quantum random access machine model (QRAM). While Knill’s work is an important step forward, pseudo code it has little use for writing actual applications. Even though, it is a step in the right direction.
[image: image65.png]@ ¢ MEASUREDFOURIER(g, d)
Input: A quantum register g with d qubits. The most significant qubit
has index d — 1.

Output: The amplitudes of a are Fourier transformed over Zya, and then
measured. The most significant bit in the output has index 0, that is the
ordering is reversed. The input quantum register is returned to a classical
state in the proc

w e el
$+0
fori=d-1toi=0
Ry(as)
Hlas)
wa
b (@+am)2
C: The expression on the right of this assignment state-
‘ment requires a; to be in a classical state as it involves
operations not allowed for quantum registers.

Figure 26. Measured Fourier transform utilizing Knill’s pseudo code [2]
Sanders and Zuliani developed the programming language qGCL as a means to express quantum algorithms [51]. The primary purpose of the language is for program derivation, correctness of proof, and teaching. As the authors point out, qGCL does not aim to do numerical simulations of quantum algorithms like Omer's QCL, which will be covered later. Within the paper they first describe a probabilistic extension to Dijsktra’s guarded command language (GCL) [52], which they appropriately call pGCL. They then extend pGCL to invoke quantum procedures and call the resulting language qGCL. Thus qGCL is like many other proposed quantum programming techniques where the computation is controlled by a classical computer utilizing a quantum sub system. The three quantum procedures they outline and place emphasis on are fundamental to any system carrying out quantum computation: initialization, evolution, and finalization (or observation). They also provide implementations of several quantum algorithms, including Shor’s [31] and Grover’s [34]. Since GCL was proposed in 1975, and qGCL is an augmentation to it, qGCL may be too limited and dated to construct commercial applications. Like Knill’s pseudo code, qGCL also suffers from a very mathematical syntax- something that is harder for commercial programmers to understand and even type. As the authors point out though, this simplicity makes it an effective tool for teaching the basics of quantum programming.

[image: image66.emf]
Figure 27. Shor’s algorithm in Sanders and Zuliani’s qGCL [51]
Bettelli has developed a preliminary extension for C++, in the form of a library, for quantum computer programming [32]. This library exposes several classes that can be utilized for quantum computation. The use of classes provides the important benefit of encapsulating the workings of the library and hiding them from users. Furthermore, unlike some procedural implementations, rules can be better enforced and valid states maintained through the use of classes. Bettelli’s implementation also generates quantum operations, and these byte codes could be piped to an actual quantum sub system or a simulator. While the library is in a preliminary form, Bettelli’s paper also contains a list of features desirable for a scalable quantum programming language. One of the most important of these points is that a quantum programming language should be an extension of a classical language. Extensions can take a variety of forms: class libraries, dynamically linked libraries, and assemblies to name a few. Not only does extending a classical language make it easier for existing programmers to utilize quantum features, but it also helps to keep the library useful as the language surrounding it evolves to tackle classical problems. Thus the author of the quantum extention can focus on tackling only those issues that apply to quantum computing instead of all issues as must be done with a proprietary language. It is important to note that some languages, such as Python, are evolving iteratively through open source methods [53] as opposed to large standards developed over a period of years as is the case with C and C++. C++ was developed in 1984 [54], but the standard was not approved until 1998 [55]- enough time for processors to double in speed seven times in accordance with Moore’s law. Additionally, there have been over 8,500 programming languages developed [1], yet only a select few of these are actually used in industry- further strengthening the argument for creating extensions of existing languages instead of new languages. Bettelli’s work is the most useful to existing programmers because C++ is a widely used language and only the library needs to be learned, not an entire new language. As new languages are developed and speed and efficiency of a language are not as important due to increased computing power, C++ seems to be declining in popularity.
[image: image67.emf]
Figure 28. Grover’s algorithm in Bettelli’s C++ extension [32]
Over a period of six years, 1998 – 2004, Omer has developed what is arguably the most complete quantum programming language to date: Quantum Computation Language, or QCL [56-59]. QCL is a language that has a structure similar to C, making it easy to learn for many programmers because C and its decedents such as C++, C#, and Java are popular languages [54]. However this strength of basing QCL on C is also part of its downfall. C is still used for low level applications such as drivers, but not for cutting edge commercial software. As a result, QCL does not have many of the features available in modern languages. By being a proprietary language QCL would be difficult to adopt in the real world for many programmers writing applications since it does not have the power and libraries available to modern languages. Omer has also created a complete simulator for QCL programs, including an interpreter. Having an interpreter for QCL allows for students of the language to create and see how code behaves in real time. In a benefit to all studying quantum computing, Omer has also made the source code of the interpreter available [60]. While the inclusion of the interpreter and source code makes QCL useful, the fact that it is a new language does present an obstacle to those wishing to learn quantum computer programming. As with all new languages, it also makes it harder to integrate quantum algorithms into existing code bases.
[image: image68.emf]
[image: image69.emf]
Figure 29. Deutsch’s algorithm expressed in Omer’s QCL [58]
Blaha has introduced a quantum assembly language and quantum C language [61]. In his two language proposals the languages themselves are algebraic in nature, which he argues allows for better understanding of the language and proof of correctness if necessary. Within Blaha’s work however, less than one page is dedicated to his quantum C language, and most of that involves an explanation of pointers in C. So while he proposes a quantum C language, there isn’t much of an explanation of how it works other than defining the algebraic representation of the pointer operations. It is also interesting to note that Blaha was able to obtain trademarks for what would seem to be generic terms in the field of quantum computing, including “Probabilistic Grammar”, “Quantum Grammar”, and “Quantum Assembly Language”. Like Bettelli’s work, Blaha’s use of C makes the approach very viable. However, without further details it is hard to gauge how easy it is to actually use.

Markus has devised a method to simulate quantum computing using Fortran [62]. While not a true language or framework in itself, it is worth noting because it is an example of how such a library would work. Currently any quantum computing language or library must simulate the quantum system since quantum computers are currently unavailable for use in programming. Many languages are derived from Fortran [54], so Markus’s paper gives a good insight on how to actually accomplish that for a variety of languages. Included in the paper is the full source code listing for the simulation, along with debugging statements. It is also notable that Fortran has been used as a parallel programming language in the Fortran-K implementation, which is a subset of Fortran-90 [63]. Nonetheless, more modern languages such as Fotress [37] could also be used to simulate quantum computing and be more accessible. Providing the source code is invaluable for others developing quantum libraries as it provides a source of solutions for problems that may arise during implementation, and this is a benefit of the work Markus has done.
Carini has developed a method to simulate qubits using the programming language Ruby [64]. Like Markus’s Fortran simulation [62], even though it is not a language or framework it is noteworthy due to the implementation techniques. Carini’s implementation involves simulating the states of a qubit on separate threads, although she admittedly ran into some scheduling issues. This is another important insight for the simulator of any proposed language or framework- the simulation should take advantage of today’s multiprocessor systems. Doing so increases efficiency of the simulation, but presents challenges of its own through the need to implement parallel processing techniques. In particular this presents a problem for any framework or language built upon the Python programming language due to the global interpreter lock. While Python is a concise and easy to program in language, only one thread within a process can access Python objects at a time [65]. This means that even with a multiprocessor system, multithreaded Python programs cannot take full advantage of it as they effectively use one processsor. The work around for this is to implement multiple processes within Python instead of multiple threads. Even with this difficulty Python is still a good candidate for building a quantum computing framework on. Python is platform independent, like Java, so it eliminates the need to port to different systems. Unlike Java though, it is an interpreted language, which allows for one to dynamically interact with the system like Omer’s QCL [56].

Svore and colleagues have developed a suite of tools for use in quantum computation [66]. These tools include a language, compiler, optimizer, simulator, and layout tools. A key feature to the language, as others have pointed out as necessary, is that it is machine independent. For practical purposes quantum computers are not yet a reality, so any proposal for programming them must be independent of whatever solution is used to realize them. Within their paper they also propose translating their high level language into a quantum intermediate language (QIR) which then gets translated into a quantum assembly language (QASM), and finally a physical language (QCPOL). This is approach is the similar to many modern day classical languages. As with many other quantum programming proposals, this one also makes use of Knill’s QRAM model [2]. Another key to the proposal is that quantum error correction be implemented on a lower level and not within the higher level language itself. This higher level abstraction is akin to how modern day programmers are not concerned with error correction within RAM or through a network connection. While the purpose of the various languages and transitions between them are described, the work does not actually include specifications for the languages themselves. As such, the languages themselves remain an open problem as is pointed out at the end of the paper as an important challenge.

Tucci has developed quantum compiler that compiles steps of an algorithm into a sequence of elementary operations [67-69]. The implementation of his compiler proposal is called “Qubiter”, for which he has made the source code in C++ freely available. While still in a basic state as he admits and lacking a GUI it is still a valuable learning tool because the source code is available. Notable about his compiler is that it will also perform optimizations. These insights he provides on optimization would be useful for any other quantum programming system in order to increase efficiency. Tucci also received a patent for the ideas that Qubiter represent in 2002 [67].

[image: image70.png]ROTY
ROTY
ROTY
CPHA
CPHA
CPHA
ROTY
CPHA

45.0000000
45.0000000
45.0000000
T 180.000000
T 180.000000
T 180.000000
45.0000000
T 180.000000

Figure 30. Output of Tucci’s Qubitter for the input 4 bit Hadamard matrix[69], which is also known as Hardamard-Walsh transform. This is in the quantum coin toss example in section 2.

While there has been a small variety of quantum computing programming proposals utilizing the imperative or object oriented approach, none of them is equivalent to or utilizes the more wide spread modern programming languages such as C#, Visual Basic, Java, or Python. The lack of a quantum computing framework for any of these languages makes quantum computer programming less accessible to the average commercial developer. Just as important, usability has also been neglected. So while the languages and libraries presented could be used, the fact that they are not similar to or use modern languages represents a significant hurdle to their use by practicing commercial developers. The fact that modern languages are not utilized for quantum computer programming and usability has been largely ignored represents an excellent candidate for work in the field of quantum computer programming.
2.2.2. Brief Overview of Select Other Quantum Programming Language Paradigms

Now that imperative and object oriented methods for programming quantum computers have been covered, some alternate methods will be briefly explored. Many of the techniques utilized by these solutions are not further explored because they are too foreign to many commercial programmers for a variety of reasons, predominantly their techniques and syntax. It could be argued that most undergraduates would have some exposure to concepts such as functional or logical programming. Even if this is the case in undergraduate education, according to the United Engineering Foundation only 40% of practicing developers hold a Bachelors degree in software related disciplines [70]. In the United States 50,000 software development jobs are created each year, but only 35,000 computer science related degrees are awarded [70]- so this trend of many developers not having a strong background is likely to continue. Consequently a majority of existing commercial programmers have no exposure to these methods. Nonetheless, these approaches need to be explored on a limited basis in order to identify commonality with imperative approaches and to point out alternate techniques.

In 1996 Baker introduced QGOL, which is a system for simulating quantum computers using a functional approach [71]. QGOL remains an incomplete work, and even though he admits rewriting it several times- although he partially blames this on standard object oriented design techniques and says there would not be a better way to partition the problem. Typically there are many different ways to design a system using object oriented techniques, so without further details on his design and implementation this assessment needs to be viewed critically. What is most useful about this paper is not the solution that he came up with, but the implementation issues that were encountered. This knowledge is invaluable for anyone looking to implement a quantum computer language and/or simulator on a classical computer.

In 2003 Sabry proposed a method of programming quantum computers utilizing Haskell [72]. Haskell is a functional language, which contains no imperative constructs and has no side effects [54]. Due to these characteristics, Haskell is a good language to model quantum computing in because it deals well with the limitations on quantum computing outlined earlier in this paper in section 2.1.4.

[image: image71.png]deutsch :: (Bool — Bool) — 10 ()
deutsch f =
do inpr — mkQR (gFalse &x qTrue)
let both = virtFromR inpr
top = virtFromV both ad_pair,
bot = wirtFromV both ad_pairy
uf = cop f qnotey
appl hadamard,y, top
app1 hadamard,p bot
app uf both
appl hadamard,y, top
topV — observeVV top
putStr (if topV then ” Balanced” else” Constant™)

Figure 31. Deutsch’s oracle for his algorithm in Sabry’s Haskell approach [72].

In April 2007 Danos, Kashefi, and Panangaden introduced their measurement calculus [73]. What is notable about their approach is that they utilize a measurement based computation model as opposed to the traditional circuit model utilized by other approaches. In essence, their measurement calculus provides a mathematical model for expressing programs or “patterns” as the authors call them. Since the model is extremely mathematical, its structure would be very unfamiliar to most commercial programmers.

[image: image72.png]TR (B.4NAZ1.3)T(H @ ((2,3) = XPMFEuEsX? My Ens.

By standardizing:

X5 M E EnXy My Exs —rx
X3 ZPM3| ExiX | MYEEn =gx
X222 MIX3 MIE ;s ExsEsy =ux
X{ZPZPMIM5E Eay.

Figure 32. The CNOT (controlled not) operation in Danos, Kashefi, and Panangaden’s measurement calculus [73]. The CNOT operation takes two input bits, A and B, and has two output bits A’ and B’. A NOT operation is performed on B if A is 1, else B is left untouched, resulting in B’. A’ is the same as A. (This applies when the CNOT gate operates classical. The phase kick back algorithm is an example of how both can be altered in a quantum system.)

Selinger has introduced a statically typed, functional language, which the author describes as “quantum data, classical control” [74]. The language Selinger introduces is called “Quantum Flow Charts”, or QFC. As the name implies, the language is based largely on flow charts, except that they are functional in nature: that is, they transform specific inputs into outputs instead of updating a state as in an imperative approach. Based on QFC, Selinger also introduces an actual programming language, QPL, which is largely based on the principles laid out in QFC. While the syntax of QPL looks imperative at a glance, it is still functional. Selinger also proposes an alternate of QPL called “Block QPL”. While this is a very detailed and thorough paper, it still suffers from the deficiencies previously outlined- its functional nature is foreign to many practicing developers, and the introduction of a new language introduces a significant hurdle for its use. It should be noted that Selinger’s has also written a brief survey of quantum programming languages [75]. In his survey he also notes the practicality of Bettelli’s C++ extensions.

[image: image73.png]OFT: |input I rotate: [input h:qbit, ¢:qbit list, n:int |

qb J:qbit, t:qbit list, n:int
Case [Case £

e b g il e
bigbit @ qbit list hiqbit, nil:L niint h:qbit, c:qbit & qbit list, n:int
(@y)=c
huqbit, t:qbit list h, :qbit, y:qbit list, n:int

- H]| 2.h = Ra

h:qbit, t:qbit list h,2:qbit, y:qbit list, n:int
new int 1= 2| [discard] [ni=n+1
il h:qbit, t:qbit list, n:int h,:qbit, y:qbit list, n:int
(i, 1) = rotate (1, t,11) hiqbit, nil:1 otate (1. y.7)
h:qbit, t:qbit list 1, 2:qbit, y:qbit list
QFT(1)]] = (i) | ns(2,0) |
fiqbit tiqbie list hiqbit, t:qbit list hiqbit, t:qbit Tist
1= iny (nil) I=1na(h r,\ i
-qbit, :qit list
Lqi Lqit list [output uqbit, tqpit list
qbit list

| output I:qbit list |

Figure 33. The Quantum Fourier Transform in Selinger’s QFC [74].

Tafliovich has developed a method of programming quantum computers based on an extension of probabilistic predicative programming [76, 77]. Hehner, who was Tafliovich’s advisor, defines predicative programming as a method in which each step of the program is proven as it is made [78]. This is both the strength and weakness of the programming style. While it results is software that is formally proved, this approach is likely to be too time consuming and foreign for many commercial programmers. For non critical systems, this cost of formally proving the software is likely to be too high as certain defects do not render the software un-shippable. Additionally the cost of formally proving software is impractical for prototyping. It has also been noted that the most efficient software organizations are those that do not remove all of the defects [70]. The exception to this is obviously mission or life critical software. As with many other methods of programming quantum computers, Tafliovich assumes that the programs will be executed on a classical machine with a quantum sub system as proposed by Knill [2]- further enforcing this theme across different proposed programming methodologies for quantum computers.

[image: image74.png]=0 fINt =t+1
= (((=1)’°/2+ (=) /2) x [0) + (-1)°/2 = (=1)"/2) x 1)) @' *x

(t'=t+1)
= [H(U;(H|0))) 2'|” x (¢ =t +1)

== |0); ¢ = Hep; t:=t + 1; ¢ 1= Uptp; o := Hy;

[’ x (¢ =1t)

=1 :=|0); ¥ := Hy; t:=t+ 1; ¢ := Uptp; ¢ := Hy; measure ¢ x

Figure 34. Deutsch’s algorithm utilizing Tafliovich’s approach [76].

While programming techniques that are not imperative or object oriented are alien to many commercial programmers, examining them reveals implementation hurdles and a better idea of what might work or not. It also shows that Knill’s QRAM model is a common theme across many programming proposals. Quantum computing itself relates closely to functional programming, so it is not surprising that a variety of the quantum computer programming proposals utilize this approach. Additionally more mathematical and formal methods have been selectively examined. These techniques are helpful for anyone trying to get a lower level view of quantum computer programming, such as a physicist who might work on the implementation of quantum computers. While the programming of quantum computers may be considered a challenge to computer scientists, the implementation of quantum computers is largely a challenge to physicists.

2.3. Framework Design

In his widely used text on software engineering Roger Pressman defines frameworks in the object oriented sense in the following manner: a framework is a group of cooperating classes that form a skeleton to address a specific problem domain [79]. To put it another way, frameworks are partially complete solutions to a set of problems [4] and therefore allow for the reuse of both design and code [80]. There is a fundamental difference between traditional libraries and frameworks: libraries are meant to be utilized by the application while frameworks provide important parts of the application architecture [4]. Design of programming frameworks is generally considered to be harder than application development, primarily due to the fact that frameworks need to be more flexible [81]. Due to the requirements that frameworks need to be more flexible, it is important to examine the literature and established techniques before carrying out a project in framework design. In short, “framework design is all about developing the right abstractions” [81]. Nonetheless designing frameworks is a balancing act between providing simplicity and power [82].
The first framework to see widespread use was the Smalltalk-80 user interface framework called Model/View/Controller (MVC), and was developed in the late 1970s [82]. Some other frameworks that have seen extensive use include MacApp, zApp, Microsoft Foundation Classes (MFC), and the Microsoft .NET Framework (currently at version 3.5). Regardless of the framework, complete and accurate documentation has proven critical to the adoption of a framework [83, 84]. In the spirit of good documentation the classes, methods, and parameters must also have descriptive names so that a user who is familiar with the framework can easily deduce their purpose. Abbreviations and nondescript names means that the programmer has to stop programming and reference the documentation frequently.
Exceptions are commonly used within frameworks, as they are considered to be a more structured way of error handling [54, 85]. There is usually a base exception class that frameworks can derive their own exceptions from. Exceptions also allow for libraries or programs to easily handle errors not thrown by them [54]. This is one example of how exception handlers can be reused. Exceptions are also typically thrown at or close to the source of the error. This makes debugging easier than methods which return error codes. If error codes are returned, they may not be checked, leading to hard to detect errors since the symptom of the error may appear far from the actual source.
Johnson has made contributions to framework design [80]. While a decade old, his 1997 paper “Components, Frameworks, and Patterns” [82] makes the distinction between the three and provides a brief history of frameworks up until 1997. One crucial thing he points out in this paper is that the most important part of a framework is typically its abstract classes. It is the abstract classes that lay out the design for how all the pieces fit together. Frameworks also typically come with component libraries, which are libraries that provide usable subclasses of the abstract ones. Johnson also points out that one benefit of frameworks is that they let users create new components from existing ones, such as a user interface out of widgets [82]. Furthermore, frameworks also provide templates on how to create new components. He also advocates iteration in the framework design process, as do many others.
There are two types of frameworks that are commonly encountered: white box frameworks and black box frameworks. The difference in the two is primarily whether or not the user of the framework needs to be familiar with the internal workings of the framework. A framework that is typically used by deriving classes from the framework is a white box framework, if the user needs to be aware of the workings of the base class. A framework in which a user instantiates framework classes and sends them messages is a black box framework [86]. Microsoft’s .NET framework could generally be considered a black box framework because users typically instantiate its classes and then use those classes- therefore they do not need to be concerned with the inner workings of the framework. Black box frameworks could generally be considered the preferred approach since they are more loosely coupled with the software that uses them. Less coupling is considered to be a good trait in software [79].
Within frameworks there is the concept of frozen spots and hot spots [81]. Frozen spots are those components of the framework that are fixed. They are called frozen spots because they are not changed by users of the framework. An example of a frozen spot would be a static method, a method on a class that can be called without instantiating an instance of that class. Another example of a frozen spot would be a sealed class- a class that cannot be derived from or changed [87]. Hot spots are those that vary in a framework, hooks and pure virtual methods are examples. Thus there lies a distinction between prepackaged parts of the framework (frozen spots) and those where the implementation may change (hot spots). Obviously when designing a framework special care needs to be taken in order not to place components in the wrong category.

Roberts and Johnson have established a series of patterns that they intend to be applied in a particular order in order to develop frameworks [88]. They also expect the process to be carried out in an iterative fashion. Essentially what they propose is to come up with several examples of how the framework will be used, and then derive a black box framework through a series of steps. Their purpose in starting with examples is because they believe people generally develop abstractions, and thus frameworks, from concrete examples. They have developed a complete process for designing frameworks as Figure 35 illustrates. However their later steps are not applicable to the framework design this proposal is for.
[image: image75.png]‘Three Examples

!

‘White-box Framework

!

Component Library

e

Separate Changeable | [Add Parameters to
from Stable Code | | Eliminate Subclasses

Fine-grained
Objects

e L2

Black-box Framework

!

Visual Builder

!

Language Tools

Figure 35. Roberts and Johnson’s method to develop a framework, as they illustrate in [88]. The arrows represent the flow of the framework development, starting with the three examples.
Throughout their paper Roberts and Johnson make several important points that should be noted [88]:
· They advocate the use of inheritance.
· Frameworks that are usable out of the box are much easier to use

· Separate changeable code from stable code (hot spots and frozen spots).

· More objects increase the complexity of the framework, so there is a fine line between creating trivial subclasses and make methods take additional parameters.

Imaz and Benyon advocate a similar approach to Roberts and Johnson. Imaz and Benyon encourage using what they call “blends”, in simple terms taking multiple input spaces and mapping them onto a more generic space which is the blend [89]. The purpose of the blend is to get a new structure not provided by the input spaces. When their approach is applied to framework design, examples are first gathered. These examples are then used to establish the classes and various entities, which are continuously refined as analysis continues [89].
Hou and Hoover have developed a method for formally specifying the constraints of a framework [90]. Their method allows for the constraints of a framework to be specified and violations identified. When violations are identified they also show the relevant documentation on why the constraint is needed. Within their paper [90] they also give an example of how their method, FCL, can be used to specify constraints in the Microsoft Foundation Classes (MFC), the precursor to the .NET framework. Constraints of a framework are often informal and based on the framework designer’s intentions on how the framework should be used. An example would be an abstract vehicle class provided by a framework. A constraint intended by the framework designers would be to decrease the speed of the vehicle when braking occurs. This constraint is not enforced, so a user can misuse the vehicle class and derive a class where the vehicles speed increases when braking occurs. FCL provides a formal way to specify and enforce constraints such as this. While FCL does not see much use the fact that it exists is important. It illustrates through concrete examples that the constraints of the framework should be documented at a bare minimum, and better, enforced as much as possible. However, a framework designer must be careful not to make the constraints too limiting so that it unnecessarily reduces the applications the framework can be used for.
[image: image76.png]specialATM : subclass(ATM)
//forall specialATH
{
method debit(Account &o)
=>
{
calls(ATH: :debit (0)) xor calls(o.debit())
}

Figure 36. An example of FCL. In this example classes that derive from ATM (called specialATM) can either call debit on ATM or on Account, but not both (xor)- effectively keeping the two from both being debited on one call to the debit method.
While not specific to framework design, Bruce Eckel has laid out some programming guidelines in his popular Java text Thinking In Java. These selected guidelines [91] from his text also apply to frameworks:
· Separate the class creator from the class user.
· Make classes as atomic as possible.

· Watch for long argument lists.

· Use exception hierarchies.

· Keep things as private as possible. (As in the access levels of private, protected, and public.)

· Avoid using magic numbers, constants should be used instead.

· Choose interfaces over abstract classes. This is especially important when multiple inheritance is not allowed in the target language.

· In constructors, do only what is necessary to set the object into the proper state.

· Remember that code is read much more than it is written.

Abi-Antoun has discussed his experience in the design of a large framework [83]. Most of his discussion focuses on challenges an organization faces when developing a framework. There are several more general points that seem logical to follow in framework design such as in this proposal:
· There should be a small number of interfaces that are used consistently throughout the framework.

· Design for future changes.

· The framework should be developed iteratively, including liberal refactorization where deemed appropriate.

· Prove by demonstration. This will be extensively used in the research project.
Most of the literature on frameworks does not concentrate on the design, but rather how to document it well [4]. While the literature is sparse on framework design, there are some various themes that run common throughout the literature:

· Repeat patterns of engagement [4].

· The framework should be developed through multiple iterations.
· The framework must be designed with future changes in mind.

Frameworks are important topic in software engineering, in which the literature is surprisingly light. It is worth examining in the context of this project since the goal is to develop a framework.
2.4. Summary of Related Work

There are three main bodies of work related to the challenge of developing a framework for effective quantum computer programming: general quantum computing, quantum computer programming, and framework design. The three of these combined form the foundation that this proposal is based on.
3. Hypothesis and Proof Criteria

Section 3 outlines the hypothesis and proof criteria for this research proposal. The hypothesis is presented in section 3.1, along with details further explaining and elaborating on it. Section 3.2 presents the list of proof criteria. These are the criteria that will be used to judge when the research is complete.
3.1. Hypothesis

“A practical framework for quantum computing can be designed for existing modern object oriented classical languages that can be shown to satisfy a list of functional and usability properties.”
A software framework, or framework for short, is a group of cooperating classes that form a skeleton to address a specific problem domain [79]. These abstract base classes or interfaces in the framework also come with implementations, allowing for the framework to be used in the development of working software. The use of the abstract components also means that the implementation can be swapped out with ideally no impact on software that has been developed to use the framework. The proposal is for the design of a quantum framework and not a library since the framework can be extended by users. Furthermore it is easier for a user to search through several methods on a class in a framework than several thousand methods in a traditional API which provides only method calls. In light of this hypothesis this means that a simulation of a quantum computer could be the part of the present implementation, but this could be switched out with an implementation that runs on actual quantum computers once they become viable.
With the exception of bleeding edge developments such as quantum computing, all software has been written to run on classical Turing machines. Therefore it should not be surprising that nearly all software has been written utilizing classical languages. Much in the same way that classical computers may be extended to utilize quantum computers in accordance with the QRAM model [2], the software techniques should also follow this approach of extending what is already present.
Many of the existing proposals for programming quantum computers suffer from one or more of the following flaws. These flaws make the existing proposals difficult to use for current commercial programmers. If none of these flaws are present in the framework then it can likely be deemed as practical.
· Foreign techniques– A majority of commercial developers do not even possess a Bachelors degree in a software related discipline [70]. This means that they likely have not been exposed to more exotic programming techniques such as functional languages or formally proving software. The use of these foreign techniques represents a significant learning curve, and thus expense, for any software organization wishing to utilize them.
· Not scalable- The proposal works well for small sections of code, beyond that it becomes difficult to manage and understand. Most visual languages and languages requiring formal proofs fall under this category. Commercial software is usually large and complex, and any approach that cannot be scaled up to these large software systems is unusable. It should be noted that for life critical software, the use of formal proofs is acceptable, but the cost to do so is prohibitive for typical commercial applications.
· Proprietary language- Over 8,500 languages have been developed to date [1], yet no more than a handful of them are commonly used for commercial applications at any one time. Languages developed for the purpose of quantum computing are unlikely to be adopted because they lack the features or power for classical computing that existing classical languages have. Instead of focusing merely on quantum computation, which is what is trying to be achieved, a quantum language also has to try to replicate the immense classical power and feature sets of classical languages. Furthermore, it is unlikely that a language specifically for quantum computing would also stay up to date with classical programming techniques [32]. A quantum computing specific language may be able to perform quantum computation, but it is highly unlikely that it will perform classical computation as well as existing classical languages. The focus of a quantum programming technique should be on quantum computation, developing quantum languages distracts from this goal and forces the designer to tackle classical issues that are already well addressed in existing languages.
· Difficult to integrate with existing software- It is unlikely that entire code bases will be rewritten solely to take advantage of quantum computers. Therefore any method to program quantum computers must integrate well with existing software. The use of interoperable components such as web services is an example of easy integration.
· Usability/Unconventional framework design- Languages and libraries that see widespread use are as easy to use as possible and utilize many common conventions. APIs and frameworks that do not follow established conventions or are not consistent are thus difficult to work with and prone to being used incorrectly.

· Runs only on a quantum computer- It is likely that quantum computers will initially be a resource that is usable by a classical computer [2] instead of stand alone machines. Consequently the programming technique must integrate with classical computers somehow. Again, the quantum resource does not necessarily have to be local.
This list of commonly encountered flaws suggests that a list of usability criteria should be established for quantum computing. Additionally no list of functional properties for a quantum computer programming has been encountered in the literature. Without this functional list, it is possible that proposed programming methods may be incomplete- something that may easily be overlooked without close inspection.
It is not disputed that most software is written by commercial developers. Therefore this group of people will also be writing a majority of the software that utilizes quantum computers. If quantum computers are to be used in real world applications instead of being idling black boxes, any technique to program them must make these practitioners the primary target group.
One may ask why the proposed framework itself does not contain the algorithms that a quantum computer could carry out. It is certainly possible that it could contain most of the currently known algorithms, such as Shor’s factoring algorithm. However, the goal of the library is to provide the components necessary to implement these known algorithms and future ones. Simply exposing existing algorithms does not allow for new ones to be implemented using the framework. This framework will also allow those exploring quantum computing to actually implement the algorithms themselves.

[image: image77.png]High

Level of
abstraction

Low

quantum algorithms

framework for quantum computing

classical

compiled
code

interpreter

operating system

quantum hardware

«— Targeting

Existing
= Proposals

Figure 37. Where this proposal and other proposals fit into the various levels of abstraction between the hardware and application. The rectangles are meant to illustrate various levels of abstraction ranging from the actual hardware (bottom), which is at a very low level of abstraction to an application (top), which is at the highest level of abstraction since a user does not even need to be aware they are utilizing quantum hardware.
The proposed research will make the following contributions to the field:

· A summary of framework design literature. This has not yet been encountered while searching for framework literature.
· A list of functional properties a quantum programming approach must satisfy.
· A design of a quantum programming framework that is also practical for existing commercial developers.

· A classical simulation of the design so that it can be used on a limited scale on existing classical computers.

As outlined, the existing proposals suffer from various flaws that make them difficult for use in a commercial environment. It is hoped that this research therefore results in a combination of the fields of quantum computer programming and usable framework design in order to create a usable quantum computer programming framework. Hence, it is the goal of this project to deliver a prototype of a practical framework that is suitable for use in a commercial software development environment.
3.2. Proof Criteria

The following is a numbered list of criteria that will be used to determine if the requirements in the proposal have been meet.

1. Gathering examples

a. Include where the examples originated from.

2. List of functional properties that quantum programming techniques must satisfy in order to carry out quantum computation.

a. Include where these function properties were obtained from.
i. Perhaps a matrix listing properties on the y axis and existing programming language on the x?

ii. Therefore a detailed survey of what is present in existing imperative and object oriented methods will be carried out.

3. List of usability properties that must be satisfied.

a. Be sure to list sources, examples, and reason for including each usability property.
4. A proposal for a quantum computer programming framework.

a. Includes a base library consisting primarily of interfaces and abstract base classes.
b. Language independent- UML.

c. Must prove/show all properties.

5. Implementation of the interfaces.

a. Not necessarily complete, but at a minimum the interfaces will be coded. The interfaces will be included in appendices.
i. The interfaces will be implemented in two languages to show they are not too strongly tied to one language.
b. Further refinement is a possible area for future work.

c. Remote simulation is also a possible area for future work.

d. The implementation should be well documented.

e. Automated testing where possible.

6. Proofs that the proposed framework satisfies the usability and functional properties.

a. Includes why the framework does not suffer the flaws outlined in 3.1.

b. Likely to be typically proved by demonstration, in accordance with [83].

7. Design rationale.

8. Analysis of iterations of the framework development.

Section 3 of this proposal has outlined what is going to be accomplished in the hypothesis, as well as what criteria will be used to judge when that work is complete.

4. Methodology
This section outlines how to solve the problem outlined in the previous section in addition to proving that it has been solved. This outline is meant to be a high level overview of the steps and therefore is intentionally lacking many details. As the actual work progresses these steps summarized will likely change, so this is not intended as a final project plan, but merely the initial plan to give the work direction and milestones. The dissertation itself will evolve throughout the project from this proposal, much like this proposal evolved from the analysis of literature.
Instead of the classic waterfall approach, this framework will be carried out in the iterative approach advocated in the literature of framework design. For each iteration it is anticipated that several primary pieces of work will be carried out, roughly in this order:

· Gathering examples.

· See Gathering Examples for details.

· Development of functional and usability properties.
· See Development of Quantum Computer Programming Properties for details.
· Design of interfaces that satisfy the properties.
· See Design of Interfaces for details.
· Implementations of the interfaces so that the proposal can be used and tested, although due to time constraints this implementation may not be complete.

· See Implementation of Interfaces via a Classical Simulation for details.

· Proof that the proposed interfaces satisfy the properties.

· See Proof that Framework Satisfies Functional and Usability Properties for details.
· Analysis of iteration.

· See Analysis of Iteration for details.

See Proposed Timeline for the proposed timelines for each iteration of the project.
4.1. Continue Scanning Literature
The literature needs to be continuously examined throughout the entire project. In particular literature in following three areas will be focused on: general quantum computing, quantum computer programming, and framework design.

The project should not be “carried out in the dark” once it has begun. In particular a continuous scan of the literature also provides the following benefits:

· Alternate ideas may have elements that are beneficial and can be incorporated.

· Other people may have come across certain stumbling blocks and documented them. These stumbling blocks could possibly be avoided, or at least minimized.

· Similar proposals can be identified, and this proposal altered in order to satisfy the criteria of uniqueness for the research.

· Since viable commercial quantum computers do not yet exist, and this proposal is for programming such computers, it is essential to keep track of work towards this goal.
4.2. Setup and Deployment of Infrastructure

In order for this work to be carried out there needs to be a certain amount of infrastructure in place. The primary purpose of this infrastructure is to provide a stable, redundant, and detailed way to track work as it is carried out. Although this infrastructure primarily benefits the implementation of the framework, it does provide a central repository for all work. Having this infrastructure in place provides several key benefits:

· Source code management allows for progress to be accurately tracked and reason for changes identified. Source code management is not limited to source code, but also to other file types such as the UML for interface design.
· The blog (web based log or journal) on the site would provide a detailed account of the work as it is done. This will be invaluable for documentation and useful to other who may develop or refine other techniques.
· The bug tracking system would provide a detailed “to do” list.
· This would primarily be of use during the implementation phase.

· The wiki would provide a good knowledge base, although all important points will be included in the dissertation.
· Automated builds and tests mean that less work is required to “release” the implementation to the public.
· The server could be used to test the non-local quantum resource idea.

In order to provide the benefits listed, the server will have to have the following installed and/or configured:

1. Source Code Management System (SCM). Completed, January 2008.
a. SubVersion, commonly abbreviated SVN (http://subversion.tigris.org/)
2. A web server to redirect requests, provide security, etc. Completed, January 2008.
a. Apache (http://httpd.apache.org/)
3. A bug tracking system, wiki, and web interface to the source code repository. Completed, January 2008.
a. Trac (http://trac.edgewall.org/)
4. Redundancy.
a. RAID 1 (mirrored) hard disks. Completed, December 2007.
b. Abakt to create the backup files (http://www.xs4all.nl/~edienske/abakt/). While discontinued, the program works well for creating and managing backup files. Complelted, January 2008.
c. Transfer of those files to an offsite location.

5. Domain- it needs to be accessible from anywhere on the Net. Completed, January 2008.
a. While it should be accessible, access needs to be restricted.

6. Automated daily builds and tests once the implementation stage is reached.
a. CruiseControl for automated builds (http://cruisecontrol.sourceforge.net/)
b. MbUnit for tests (http://www.mbunit.com/) . Completed, December 2007.
c. Documentation generation.
The development platform targeted for implementation will be Microsoft .NET version 3.5, code named Orcas, which was released in November 2007 [92]. This ensures that the most up to date version of the .NET framework is targeted for the implementation. As mentioned previously, the design of the interfaces themselves will be as language independent as possible, likely via UML. To help illustrate this the interfaces will also be implemented in Python 2.4.
In summary the most important aspect of this infrastructure is that it will provide a very complete record of the work. This record will likely be of tremendous value when documenting the efforts in the dissertation. Furthermore, it could be exposed to the public once the work is completed.

4.3. Gathering Examples
As outlined in 2.3, examples are the cases that frameworks can be designed and verified against. As a result it is necessary to gather several examples before carrying out the work. One obvious selection of examples is the commonly used quantum algorithms such as Deutsch, Shor, and Grover. Analysis of examples coded in other quantum programming methods may also give insight into the necessary properties.

4.4. Development of Quantum Computer Programming Properties
Developing requirements is an essential part of any software project and it molds the design and implementation. Development of requirements is so important that it has been called “a bridge to design and construction” and makes up the first step in the classic waterfall model of software development [79]. The properties fall into two primary categories:
· Functional properties – These properties detail what must be supported in order to carry out quantum computation.

· Usability properties – All existing proposals suffer from one or more fatal usability flaws. Development of a list of usability properties helps ensure that future proposals are more accessible.

To date no complete detailed description of what actions a quantum computer programming method must provide have been encountered in the literature. The limitations, various operations, and so on are scattered and not placed in a concise list. Thus before the framework can be designed, what it needs to be able to carry out needs to be identified. These requirements will be referred to in this paper as functional properties. It is anticipated that these requirements will largely fall into the following categories:
1. Data types

2. Operations

3. Enforcement of limitations of quantum computing.

In addition to the functional properties, usability properties must be established. The establishment of these properties represents a significant portion of the research to be carried out, since little work has been done in terms of usability for quantum computer programming. All of the examined proposals for quantum computer programming suffer from one or more fatal flaws and these properties will not only allow for this proposal to avoid those flaws, but also increase the ease of use.
In addition to the development of the list of properties, use cases will also be developed for them. These use cases will be used later on to measure how well the interfaces work [93].
Once the requirements have been determined to be complete and relatively stable, the Design of Interfaces can be carried out. Carrying out the Design of Interfaces before the comprehensive list of properties are complete will lead to inefficient use of time as work is scrapped or redone to incorporate properties that were originally overlooked. Thus the completion of the list of properties represents a significant milestone in the research project.
4.4.1. Ability to use Remote Resources

As outlined in Knill’s QRAM model, a quantum resource may be local or remote. The ability to access remote resources can be considered one of the functional properties, but it is worth special mention due to the impact it may have on all the proposed deliverables.

Before the implementation is carried out, how that access will be carried out needs to be determined since it will obviously impact the implementation. More importantly, it may also impact the properties and design of interfaces. Any design for programming quantum computers that can only utilize local resources does not fit into Knill’s QRAM model and will be harder to use. If the first quantum computers are network resources, similar to mainframe, methods that cannot easily use these remote resources are unlikely to be adopted. Throughout the history of computing, methods that see wide spread use are often the first ones used, not necessarily the best ones. Taking remote resources into account initially will thus make things easier.
Web services are a modern method used to access resources. In practice those resources are typically remote, but they can also be local. The only down side to accessing web services locally is that the overhead is higher than accessing them directly through more local means, such as accessing a dynamically linked library. However the advantages of utilizing a quantum resource, along with ever increasing computing power, means that this overhead is of little concern if local. Although this approach of web services needs more investigation, it appears to be a viable candidate for being able to access local or remote quantum resources. Web services also have the added benefit of being easy to create and use in the .NET environment. Additionally, the location of the web service can be changed at run time.

The research work will consist of determining how viable web services are for accessing quantum resources. If web services are not a viable approach then alternates will be investigated until a practical one is found.
In the end, any implementation must be able to work with actual or simulated quantum resources, both local and remote:

· Classical simulation, accessed as a local resource.

· Classical simulation, accessed as a remote resource, perhaps through web services.

· Quantum implementation, accessed as a local resource.

· Quantum implementation, accessed as a remote resource, perhaps also through web services.

An initial thought is to add an “end point” property to all components. This could be set to “local” for local implementations and to a user defined URL for remote ones. Surprisingly, specifying a remote resource is something that has not been considered in any of the programming proposals covered in this paper.
4.5. Design of Interfaces

Interfaces are functionally similar to abstract base classes that consist of only pure virtual functions. That is, interfaces define signatures of methods, delegates, and events [94] but no implementation. Any implementer of that interface must provide an implementation for the signatures outlined in the interface. So in a sense an interface can be viewed as a contract. Like classes, interfaces can also be derived from other interfaces. In some senses interfaces are abstract classes with no implementation.
In languages such as C# and Visual Basic multiple inheritance (deriving from more than one class) is not allowed. Even though multiple inheritance is disallowed, these languages allow for multiple interfaces to be implemented by a class. Thus any class can only have at most one base class, but implement any number of interfaces. Others such as Python allow multiple inheritance. Single inheritance needs to be targeted to make the design applicable to a wider variety of classical languages.
The advantage of interfaces is that code can be written against the interface with the expectation that it will be carried out appropriately by any implementer since it is a contract. In true object oriented fashion, the user of an interface is only concerned with what the interface does and not how it does it. Since the code is written against the interface any implementers of that interface should be interchangeable (as far as the particular interface is concerned).
The following C# example illustrates how implementers of interfaces are interchangeable:

using System;

namespace InterfaceImplementationExample

{

 //this program is used to show that the implementations

 //of the interface are interchangable

 class TestProgram

 {

 static void Main(string[] args) //entry point of the program

 {

 //iterate through an array of objects that implement

 //GenericInterface.

 foreach (GenericInterface cCurImplementor

 in new GenericInterface[] { new FirstImplementer(),

 new SecondImplementer() })

 {

 Console.WriteLine(cCurImplementor.Foo("TestProgram"));

 }

 Console.ReadKey();

 }

 }

 //a simple example of an interface

 public interface GenericInterface

 {

 string Foo(string SomeParameter);

 }

 //example of a class that implements the interface

 public class FirstImplementer : GenericInterface

 {

 public string Foo(string SomeParameter)

 {

 return ("Bye " + SomeParameter + " from FirstImplementor");

 }

 }

 //another example of a class that implements the interface

 public class SecondImplementer : GenericInterface

 {

 public string Foo(string SomeParameter)

 {

 return ("Hi " + SomeParameter + " from SecondImplementor");

 }

 }

} //end of namespace
Figure 38. Example of how interface implementers are interchangeable in C#.
Bye TestProgram from FirstImplementor

Hi TestProgram from SecondImplementor

Figure 39. Output from the code in Figure 38.

Once the properties have been established there is a clear goal of what the framework must do and provide. The interfaces specify how the framework will be used, but not how that will be done. Since interface implementers are interchangeable a classical simulation of a quantum computer could be swapped out with one that runs on or against an actual quantum computer.

The interfaces designed at this stage will be largely programming language independent and targeting an object oriented language. Consequently the interfaces may be designed using the unified modeling language (UML). The actual code of these interfaces will be written during the Implementation of Interfaces via a Classical Simulation stage of the project. Frameworks that are usable by multiple languages, such as Microsoft’s .NET framework, see widespread use. Part of the reason for their popularity is that a user can switch between languages without having to learn a new framework or API. This was one of the goals in the development of the .NET framework [95].
It is anticipated that the design of the interfaces will be a difficult part of the project. That is because the interfaces are what will determine if the framework satisfies the list of properties. In that sense the interfaces can be analyzed and sample code written against them to determine how usable they are. This evolution towards effective interfaces will also be important as it may point out to others why certain choices are inappropriate.
4.6. Implementation of Interfaces via a Classical Simulation

Once the interfaces have been written the next step is to create an implementation of those interfaces. Since quantum computers are not yet available for use, the implementation must be a simulation of a quantum computer that runs on a classical computer. As has been pointed out previously in this proposal, any simulation of a quantum computer on a classical system will experience exponential slow down.

The implementation carried out will be a locally run simulation of a quantum system, as opposed to a remote simulation of quantum computer. The primary reason for this is that the local simulation is anticipated to be easier to implement and the focus is on easy to use interfaces- not an elaborate implementation. Nonetheless, the interfaces will be designed with the ability to access remote resources in mind.

Automated testing is an important part of the implementation. This software will utilize a test driven development approach- that is the automated tests are written before the implementation of these interfaces are written. So along with the design of interfaces, this step will also include the development of automated tests. These tests could be run against any implementer of the interfaces and thus be used to test any implementation, not just the one outlined in Implementation of Interfaces via a Classical Simulation.

In light of this exponential slow down the use of remote resources may have to be altered to avoid timeouts. There are several benefits to having quantum computation simulated classically. One is the probabilities of all possible outcomes can be examined. For an actual quantum computer the only way to gather the probabilities is to run a large number of tests and gather them empirically. So being able to examine these probabilities may be of use to those studying quantum computers. It is important that this can only be done on simulations and not an actual quantum computer- so its use should be discouraged and perhaps prohibited in many cases.
The unit tests developed will also help to ensure that this implementation functions as an actual quantum computer will, aside from the slow down. While these tests do not guarantee that the implementation is correct, they do provide a higher confidence that it is correct. The tests also have the added benefit of being able to gather performance metrics. This may be valuable for being able to compare performance of different simulation methods.

The implementation will consist of one primary library and four secondary libraries, only one of which will be implemented:
· Primary library: the base library. This will contain all interface definitions and any abstract base classes.

· Secondary library: classical simulation accessed locally. This will allow for programs to be written and run on existing classical computers. This is the one secondary library that will be implemented as part of this project
· Secondary library: classical simulation accessed remotely. A good area for future work in order to identify and resolve problems with accessing resources remotely.

· Secondary library: quantum implementation accessed remotely. How typical software running on quantum resources utilizing this technique would be accomplished.

· Secondary library: quantum implementation accessed locally. Likely the last method to arrive for quantum computing.
The quantum implementation is included in this list because one of the goals is for the classical simulation and quantum implementation to be as interchangeable as possible. The actual library built and deployed for the implementation could be either a classical simulation or an actual quantum computer.
[image: image78.png]Base Library

4

Implementation Libraries

Classical Simulation
(Local Access)

Classical Simulation
(Remote Access)

Quantum Implementation
(Remote Access)

Quantum Implementation
(Local Access)

Figure 40. Implementation dependency graph.
There are also some specific things that should be taken into account with the implementation:

1. Seeding the random number generator- just cannot create a random number generator seeded with the timer for each qubit. If reseeding a bunch of times in quick succession the results will be anything but random because they all have the same seed.
2. Exceptions need to be taken into account. Specific ones for the implementation should be developed.
3. Basic documentation can be generated from marked up comments in the implementation, similar to ePyDoc (http://epydoc.sourceforge.net/).
4. If at all possible, violations should be detected. An example would be if a user tries to plug in a traditional AND operation, which is a violation because it is not reversible.

5. The location of the quantum resource should be considered, much like the location of a file is.

The primary implementation will be in C# using the .NET 3.5 framework. There are several components missing that will have to be developed before the implementation can take place:

1. Complex number class
2. Generic matrix class, the one in the .NET 3.5 framework is only for a 3 by 3 matrix [96] and is sealed (cannot be used as a base class).

The implementation may not be completed in this project, but at minimum the interfaces will be coded. The primary goal of the proposal is the establishment of the properties, design of interfaces, and proof that those interfaces satisfy the properties. If the implementation is not completed in this project then it is obviously an area for future work.

4.7. Proof that Framework Satisfies Functional and Usability Properties

An important part of this proposal is the proof that the proposed interfaces can satisfy the properties outlined. Proof by demonstration will typically be used as Abi-Antoun advocates [83].
The framework must also be shown not to suffer any of the fatal flaws outlined in 3.1 Hypothesis (see that section for additional details):
· Foreign techniques.
· Not scalable
· Proprietary

· Difficult to integrate with existing software
· Usability/Unconventional framework design
· Runs only on a quantum computer.
4.8. Analysis of Iteration

Each iteration needs to be analyzed so that the next iteration can be carried out in an effective manner. In particular, the analysis should answer these questions:

1. What is missing from the framework?
2. What are the usability issues with the framework?

3. How does the framework compare to existing programming proposals?

4. What were the problems encountered, and how might they have been avoided?

5. What are the recommendations for the next iteration?

In addition to answering these questions, the analysis stage should also include comparisons to existing proposals. Since one of the primary reasons for developing this framework is usability, in particular the analysis should outline why it is more usable than existing proposals.
4.9. Proposed Timeline
If this proposal is accepted around February 2008 then the following is the proposed timeline for carrying out the work, with the goal of completing it by September 2009. As outlined in section 2.3 Framework Design, many authors recommend an iterative approach to framework design. This iterative approach allows for the framework to improve as further analysis is performed and insight is gained. Unlike the traditional waterfall model, this is inline with more modern techniques [79].
With the iterative process in mind each iteration of the framework will consist of the following tasks:
· Gathering examples. Examples make excellent use cases for the framework. Implementations of key algorithms are obvious choices for some of the examples.

· Development of quantum computer programming properties. This includes the functional and usability properties. (Detailed in section 4.4)
· Design of interfaces. The interfaces are key since all implementations must conform to them. The implementation is of no use if the interfaces are poorly designed. (Detailed in section 4.5)
· Implementation, via a classical simulation. Due to the exponential slow down of simulating a quantum computer on a classical one, the use is limited. However, having a simulation will allow for the framework to actually be used for learning and experimenting with quantum computing on a limited scale. Actually carrying out programming tasks is critical to learning programming techniques. Implementation will also include limited documentation. The implementation will be written in C# targeting the .NET 3.5 framework. (Detailed in section 4.6)
· Proof that the interfaces satisfy functional and usability properties. Some of the properties may be verified against the interfaces, others against the implementation. Those verified against the implementation may also have automated tests- which could be run on against any implementation. (Detailed in section 4.7)
· Analysis of framework. At the end of the iteration analysis of the framework will be done to identify flaws, missing components, and lessons learned- which can be applied to future iterations. (Detailed in section 4.8)
As stated in 4.1, continuous scanning of the literature will be carried out throughout the entire project. The first iterations of the framework are likely to be incomplete since the goal of the initial iterations is to start addressing limited examples. If the iteration takes to long to complete then the approach starts resembling the waterfall model of software development instead of the iterative one advocated in the literature. It is anticipated that three iterations will be made:

· Iteration 1- The focus of this iteration will primarily be the establishment of properties the framework must satisfy along with interface design and limited proofs that the criteria are satisfied. The implementation will be limited in this iteration since it may have to change radically in future iterations.

· Iteration 2- The focus of this will be the establishment of a complete framework.

· Iteration 3- The framework will be refined in this final iteration based on the analysis of the previous iterations.

With that in mind the following is a timeline of the work to be carried out:

	Milestone
	Dates
	Comments

	Proposal presentation and defense
	Mid January 2008
	At the January 2008 residency.

	Setup and Deployment of Infrastructure
	December 2007 - February 2008
	

	Refinement of Proposal
	January and February 2008
	Refinement based on proposal presentation and defense for formal approval.

	Iteration 1
	February 2008 – September 2008, seven months (Winter 2008 – Summer 2008)
	Initial pass

	Iteration 2
	October 2008 – March 2008, six months (Fall 2008 and Winter 2009)
	Completion of framework

	Iteration 3
	April 2009 – June 2009, three months (Spring 2007)
	Refinement of framework

	Dissertation Defense
	Mid July 2009
	At the July 2009 residency.

	Wrap up of dissertation and buffer
	July 2009 – September 2009
(Summer 2009)
	Time to allow for the final editing of the dissertation in addition to buffer time to complete work.

It should be noted that this is just the proposed timeline; the actual timeline may vary as obstacles are encountered or solutions are quickly found. The above estimates are a bit longer then the milestones should take, building in some breathing room in addition to the three months at the end. The time allotted for each subsequent iteration is decreased because it is anticipated that there will be less work in each one. If necessary the implementation can be scaled back in order to meet the September 2009 deadline, as it is not the primary focus. The primary benefit of the timeline is that it will be easy to tell if the project is falling behind schedule.
5. Subset of Research Project: the Qubit

This section (Section 5) outlines a subset of the research project that has been carried out to date. The entire proposed process has been carried out on the smallest unit of quantum information: the qubit. While this work may change in light of discoveries made during the actual research process, it does represent a starting point. There are several reasons for doing carrying out this subset of the project at the proposal stage:
· To illustrate the actual research process.

· To show that the project is viable- there are no obvious roadblocks that prevent immediate progress from being made.
· To provide evidence that the project is feasible given the time frame.
This subset of the project focuses only on an individual qubit and operations for an individual qubit- multiple qubits are not considered. The classical equivalent of this would be only focusing on using a single bit. Following the classical example, the NOT operation would be included but AND would not because it operates on more than one bit. Unlike a classical bit, the operations on a qubit are non-trivial.
See Appendix C: Electronic Resources for details on how to obtain the source code, UML, and other resources related to this project.
5.1. Assumptions

There are several assumptions that this framework is based on. The all encompassing theme of these assumptions is optimistic: the framework will run on an ideal quantum computer. As previously stated, the focus is on a practical programming approach with little focus on the physical difficulties in creating viable quantum computers.

There are several assumptions that this framework is based on:

1. Error correction takes place at a lower level of abstraction. There has been much work in quantum error correction because decoherance is a large hurdle in the physical implementation of quantum computers [11]. Nonetheless, for this project it is assumed that the error correction takes place at a lower level of an abstraction than this framework targets. This is inline with many high level classical languages. As examples: a C++ programmer does not worry about their integer variables sporadically changing values due to hardware errors, nor does a Python programmer have to worry about the data being read out of a file incorrectly. (While they may receive an error if the file cannot be read, the data returned can be considered accurate.) In both of these cases the error correction is handled at a lower level and the programmer generally does not have to be concerned when writing their high level code.

2. There is no time limit that quantum states can be preserved for, or the number of operations that can be performed on them. There are limits in the current physical realizations of quantum computers for both time until decoherence and number of operations [11]. This proposal takes the optimistic approach that these problems will eventually be resolved. Furthermore, solutions to these problems would render the framework at best cumbersome and at worst obsolete if it took these limitations into account. The general view of this project is that current hardware limitations should not impact the design.
3. The implementation will not be concerned with round off errors. The simulation of a quantum system will take place on a classical system, which operates on bits. By this very nature any numeric representation covers a set of discrete values- irrational numbers and numbers in a continuous range loose some accuracy when expressed on these classical systems. Much like the exponential slow down of simulating a quantum system on a classical one, this slight loss of accuracy in certain cases will be considered another limitation. These types of errors are not limited to the application of quantum computing, they can be encountered in normal use of floating point data types.
4. The framework is only concerned with carrying out quantum computation. Classical operations, included any needed for quantum algorithms, are provided by the classical language which the framework is built upon.
5. Operations on a single qubit are reversible, so the limitation of reversibility does not apply.
5.2. Examples of Qubit Use

Examples provide excellent cases to design frameworks against and to test their usefulness. The framework for the implementation of the qubit will be built with the following examples in mind:
1. Performing a not operation on a qubit.

2. The quantum coin toss. In this example flipping a quantum coin twice without observation will always yield the same result. A single qubit represents the quantum coin.

3. Deutsch’s problem. Determining if f(0) = f(1) with a single run.
a. This example is not shown in this proposal.

5.3. Qubit Functional Properties

There are a wide variety of functional properties that a qubit model for programming must satisfy. Some of these properties apply to the implementation, others to the interfaces. What follows is a list of those properties, under general categories.

5.3.1. Limitations of Qubits

1. Unlike classical information, qubits cannot be copied [11, 22]. This is due to what is known as the no-cloning theorem, for a proof the reader is referred to [11].

2. Measurements cannot be undone.

3. Operations must be reversible.

4. Since the simulation will be a local classical simulation, the location of the qubit cannot be changed to something other than the localhost.

5.3.2. Representation of a Qubit

A qubit can be represented in matrix form or Dirac notation as outlined in Figure 10. So a qubit can be represented by storing the two complex numbers that represent the amplitudes of the two possible states. For ease of applying operations, the qubit will be represented internally in matrix form.
5.3.3. Operations on a Qubit

There are several common operations, or gates, that need be applied to qubits. These gates can be written as two by two matrices. (Two by two matrices operate on a single qubit, while four by four matrices operate on a pair of qubits [26].)

[image: image79.wmf]1

0

1

1

0

0

d

c

b

a

+

+

a

a

[image: image80.wmf]ú

û

ù

ê

ë

é

d

b

c

a

Figure 41. Abstract representation of an operation that operates on a single qubit, based on [9].
Various operations on qubits, source, and their corresponding matrix form:

	Name
	Matrix representation

	Hadamard (Hadamard-Walsh or square root of not) [9-11, 22, 26]
	
[image: image81.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

=

ú

û

ù

ê

ë

é

-

2

1

2

1

2

1

2

1

1

1

1

1

2

1

	Not (Pauli X gate) [9-11, 22, 26]
	
[image: image82.wmf]ú

û

ù

ê

ë

é

0

1

1

0

	Y (Pauli Y gate) [10, 11, 22]
	
[image: image83.wmf]ú

û

ù

ê

ë

é

-

0

0

i

i

	Z (Pauli Z gate) [9-11, 22, 26]
	
[image: image84.wmf]ú

û

ù

ê

ë

é

-

1

0

0

1

	S (phase gate) [11]
	
[image: image85.wmf]ú

û

ù

ê

ë

é

i

0

0

1

	T (
[image: image86.wmf]8

p

 phase gate) [10, 11, 26]
	
[image: image87.wmf]ú

ú

û

ù

ê

ê

ë

é

4

0

0

1

p

i

e

	Identity [10, 11, 22]
	
[image: image88.wmf]ú

û

ù

ê

ë

é

1

0

0

1

Figure 42. Common 1 qubit gates. (It should be noted the set (Hadamard, T) is universal for 1-qubit gates [10].)
5.3.4. Measurement of a Qubit

It is not often emphasized in the literature [22], but measurement plays an important role in quantum computation. First of all the act of measurement can be used for state preparation- that is, to place qubits in an initial state [22]. It is possible for qubits to be entangled with qubits outside the set being considered, so the act of measurement guarantees an initial starting state. The second, more obvious, role of measurement is that it is used to extract classical information from a qubit. The act of measurement collapses the qubit into
[image: image89.wmf]0

 or
[image: image90.wmf]1

. This act of measurement cannot be undone, so it isn’t possible to “peek” at a qubit.

5.3.5. Accessing a Remote Qubit
Initial implementations of quantum computers will likely be expensive, and thus used as remote resources in accordance with Knill’s QRAM model. One can easily imagine a quantum computer being a shared resource whose time is paid for. Much like web services, utilizing remote quantum resources is making the use of software as a service (SaaS).
The flexibility to access a remote quantum resource is something that has not been considered by many other quantum programming proposals. The ability to access a remote resource impacts the programming of a quantum computer: the location of that resource must be specified. Much like one has to specify the location of a file before using it, one should also have to specify the location of the quantum resource. Furthermore one should not be able to entangle qubits that reside on different remote resources.

5.4. Qubit Usability Properties

A qubit is the smallest unit of quantum information, so due to its limited nature there are few usability properties. Nonetheless there are some important features that should be present:
1. Ordering of parameters needs to be consistent between similar calls. This provides convenience and ease of use through consistency.
2. Classes, methods, properties, parameters, and so on should have detailed names that are easy for the novice to understand. Unless an abbreviation sees widespread use it should not be used. An example of an acceptable abbreviation is “qubit”, which is widely used as an abbreviation for “quantum bit”. All too often in programming, obscure abbreviations are used.
3. Prefix similar names the same so that they show up close to each other in intellisense tools. An excellent example of this is the code document object model (CodeDOM) classes within Microsoft’s .NET framework: they all begin with “Code” so you can see all of them grouped together with intellisense tools.
[image: image91.png]Qubit TestQubit = new Qubit();

Testgubic.d|
¥ Measure
& MeasureWithlabel
¥ OperationHadamard
@ Operationldentity
Moo |
¥ OperationsGate
¥ OperationTGate
¥ OperationYGate
¥ OperationZGate
¥ ResetTo

]

[vod Qubit. Operationiiot
[Perform the Not operation on the qubit, This operation s o known as the X gate.

Figure 43. Example of how operations with the same prefix show up together in intellisense tools. Also note that the method signature and documentation from the comments also shows up.
4. Abstract classes should be prefixed with “Abstract” for clarity and consistency.

5. Interfaces should be prefixed with “I” for clarity and consistency.

6. The operators should be static; that is they have no state information and can be used without instantiating an object. As the following example shows, an excellent example is an add method- it executes the same every time and has no state associated with it. Requiring the user to instantiate objects in these cases is an annoyance and leads to more code, decreasing readability. The framework could still function correctly if objects had to be instantiated, which is why this is considered a usability property and not a functional one. It should be noted that operators such as +, -, *, and / have not been overloaded in the current qubit project.
using System;

public class StaticExampleProgram

{

 public static void Main(string[] args)

 {

 //a few examples of addition performed through an object

 //and displayed to the console

 AdderObject Example1 = new AdderObject();

 Console.WriteLine(Example1.Add(2, 3));

 AdderObject Example2;

 Example2 = new AdderObject();

 int ObjectResult = Example2.Add(4, 5);

 Console.WriteLine(ObjectResult);

 Console.WriteLine((new AdderObject()).Add(3, 4));

 //examples of addition through a static object

 int StaticResult = StaticAdder.Add(11, 13);

 Console.WriteLine(StaticResult);

 Console.WriteLine(StaticAdder.Add(17, 12));

 }

}

//provide the ability to add in a static class

public class StaticAdder

{

 public static int Add(int x, int y)

 {

 return (x + y);

 }

}

//allow addition to be performed from an object

public class AdderObject

{

 public int Add(int x, int y)

 {

 return (x + y);

 }

}

Figure 44. Examples of addition using an object and a static classes.
7. Users should not be able to violate the limitations of quantum computing- in particular they should not be able to undo measurements. As with the design of any programming method, the designers must take care not to cross the line between actual requirements and forcing what they think is the proper programming technique.
8. All classes in the framework should inherit from a common class. By doing so a user of the framework knows that certain methods and/or members will be available on all classes. Furthermore it provides the framework designers a central location to put these- eliminating the need to replicate them between classes.
9. Commercial programmers of quantum computers are unlikely to have a strong physics background. To aid in programming the operations should be given names instead of specified by their rotations as in [59]. It is much easier to specify a “T gate” operation as opposed to
[image: image92.wmf]8

p

. Additionally, “T gate” is more readable. Users can specify their own operations or create clones if the prefer the more mathematical names.
10. Following the principles of frameworks, users should be able to derive operations not provided. This is part of what makes this design a framework and not a library.
11. Exceptions should be utilized for errors instead of returning error codes, which are easily ignored.

12. Users need to be protected from making what are obviously mistakes or violations. However there is a balance between protecting users from themselves and being too restrictive.
5.5. Framework Design for a Qubit

The word “framework” in the quantum programming sense would typically imply more than the limited use of a single qubit. However, it is still used here because the design will be greatly expanded in the actual project. Furthermore, this design contains interfaces and library dependencies which are traits a framework might posses. Aside from the fact that it is targeting an object oriented programming technique, the framework outlined here is language independent and specified in UML notation. The UML is also available for download for easier viewing and was written using StarUML (http://staruml.sourceforge.net/en/about.php).
[image: image93.png]cove

e
=
P
Toubit O
+AgpyOperaton(Operaton: IoubOperaton)
“appivOperatonsiGubOperatont)
I Getsbdonel, Sting)
+GetlabelZero(): String
+GetLocation(): String.
+Measure(): Integer =
+MeasureWithLabel: String G
‘sOperationtiadamard) AT
L operatontdentiy0
operationtiotd +AopyOperaton(Cperatn: IoubOperator)
operationSeated T AopiOperations(Opesatons: aubtoperatonl)
operatonTcated Commonconstuctond
operatonvcated TGetabeone0: sty
oreratonzeated Getabezerod; Sog
ResetTD(Zemo object, One: object) +GetLocation(): String.
+ResetToZerof “+Measure(): Integer
LResetTooned MessusiitLabe: Sing
JSetiabelone(abelone:Sting) L Operatortiaganard)
+Settabels(LabelZero: String, LabelOne: String) +OperationIdentity()
+SettabelZero(LabelZero: String) +OperationNot()
+SetLocation(Location: String) +OperationSGate()
P Frosirng0): st operationTated e
o e O HoSrmavitisbes0: Sing operatonvcated Dpertioctioomnd
- I operatonzcated
iy
AbstractCoveObject +Qubitlocation: String) ‘Operationtiot
s “QubLabelzer: S, Labelone:)
Toperationtit 4 ostng0: St T Qubilocatons 5v1g, Labelzeros S, Labeone: Strng)
y o ReseTo(ser: ey, Ones oec)
s ‘ResetTaone0 O aVE,
interface >> “RestTozero) Tetimiate)
e TQubitoperation O 5eti sbelone{Labelone: Sring)
perationYGate et obelllabezero Sng, Labelone:Sting)
+GetOperationMatrix() +SettabelZero(LabelZero: String) T——
+Settocation(NewLocation: String = localhost) foperths i)
e Srostrng0): st
e HoStmguiLabes0: stng
OperationsGate
= Implementationbxception
p—
10peartionsGate O
T AbstractSimulatedOperation ‘OperationTGate
~perstenati Generdtax
<<interface>> © =
TIOperationTGate Eurw— +GetOperationMatrix(): object
CoveException +GetOperationComplexMatrix(): ComplexMatrix OperationIdentity
e
10perationtdentity
Corscatites
e o

MatrixSizeMismatchException

“imagnary: Float
Real: Foat

<<exception>>
InvalidMatrixtocationException

“+AbsoluteValue(): Float
+AbsoluteValueSquared(): Fioat

+Complex(Real: Foat)

+Complex(Real: Foat, Imagnary: Float)

+Complex(Value: Complex)

+Getimagnary(: Fioat

+GetReal(): Fioat

+Operator +{Leftside: Complex, RightSide: Complex): Complex
+Operator|=(_eftSide: Complex, RightSide: Complex, : Boolear)
+Operator=={_ eftSide: Complex, RightSide: Complex, : Bookean)
+Operator-{LefiSide: Complex, RightSide: Complex): Complex
+Operator*(efiside: Complex, Rightside: Complex): Complex
+Operator(efiside: Fioat, RightSide: Complex): Complex
+Operator*(_efiside: Complex, RightSide: Float): Complex
+Operator/(LefiSide: Complex, RightSide: Compiex): Complex
+Set{Real: Fioat)

+5et(Real: Fioat, Imaginary: Float)

+SefReal(Real: Float)

+Setimaginary(imaginary: Float)

GenericHatrix

cels

+earalcels)
+GetfiumberOfcolumns(): Integer
+GetfumberOfRows(): Integer
+GenericMatri()
+GenerixViatrix(Rows: Integer = 2, Columns: Integer
+GenericMatrix(Cels[: MatrxType)
+Getvalue(Row: Integer, Column: Integer): MatrixType raises InvalidMatix.ocationException
+Operator +{LeftSide: GenericMatri, RightSide: MatrxType): GenericMatix rises MatrixSizeMsmatchException
+Operator{LefiSide: GenericMarix, RightSide: MatriType): GenericMatrx raies MatrxSizeMismatchException
+Operator(LeftSide: GenericMatrix, RightSide: MatrxType): Generichatrix raises MatrixSizeMsmatchException
+Operator(efiside: double, RightSide: MatrixType): Genericatrix raises MatrixSizeMsmatchException

jalue: GenericMatri): GenericMatrx raises MatrxSizeMismatchException
eftSide: Genericatri, RightSide: Generichatix): Boolean
+Operator|=(_eftSide: Genericatrix, Rightside: Generichatx): Boolean
+Set(Values: MatrxTypeL])
+5etvalue(Row: Integer, Column: Integer, Value: MatrixType) rases InvaliatrixLocationException

2

Complexttatrix

Derives from
pmen e +Operator +LeftSide: Complex, RightSide: Complex): Complex

| +Clone(): Complextiatrix

+Operator{LefiSide: Complex, RightSide: Complex): Complex
+Operator*(efiside: Complex, RightSide: Compex): Complex
+Operator(efiside: Fioat, RightSide: Complex): Complex
+Set(Cels: Complex(])

Figure 45. The class diagram of Cove.
[image: image94.png]Base

<<merface>>
Tqubit o

+ApplyOperation(Operation: IQubitOperation)
+AppiyOperations(1QubitOperation(])
4GetlabelOne(: String)
+GetLabelzero(: String
4Getlocation(: String

#¥easure(): Integer
+¥easurelWithLabel: Sring
+Operationtiadamard()
+Operationldentity)
+Operationot)

+OperationsGate()
+OperationTGate)
+OperationGate)
+OperationZGate)

4ResefTo{Zero;: object, One: object)
+ResefTozero()

+ResefTaOne()

+5ett abelOne(Labelone: String)
+Sett abels(LabelZero: Strng, LabelOne: String)
+5ett abelZerof_abelZero: Strng)
+SetLocation(Locaton: String)

<rerface> HoStna0): Stig
I0perationkadamard O FoStrngliithLabek: Sting

; AbstractCoveobject

<rerface>
10perationtot O

+Tostring(): String

Ssinterface>>
<anterfocer> | 1Qubitoperation
ToperationvGate

+GetOperationMatrix)

<<interface>>
(G

Ioperationzeate

Tmplementationtxception
)
Iopeartionseate

1
<<t
rationtGate O <<exception>>

OperetnTCas CoveException

<cinterface>>
Toperationldentity

Figure 46. The base library of Cove. Specifies what implementations must supply.
[image: image95.png]Qubit

“State: Conplexiatric

+ApplyOperation(Operation: IQubitOperation)
e

+OperationZGate)

+Qubit)

+Qubit(Location: String)

+QubitLabelZero: String, LabelOne: String)
+QubitLocaton: String, LabelZero: String, Labelone: String)
+ResefTo(Zero: object, One: object)
+ResefToOne()

OperationTGate

Figure 47. The local simulation of Cove.
[image: image96.png]ClassicalUtites

<<exception>>
MatrixSizeHismatchException

Complex

“magiary: Float
Real Foat

Generictiatrix

<<exception>>
InvalidMatrixLocationException

+AbsoluteValue(): Float

+absolteValueSquared(): Foat

+Complex(Real: Fioat)

+Complex(Real: Foat, Imagnary: Fiost)

+Complex(Vaive: Complex)

+Getimagnary(: Fiost

+Geteal): Foat

+Operator+{Leftside: Complex, RightSide: Complex): Complex
+Operator|={LeftSice: Complex, RightSide: Complex, : Boolear)
+Operator=={_eftSide: Complex, RightSde: Complex, : Bookean)
+Operator-{LefiSide: Complex, RightSide: Complex): Complex
+Operator [efisice: Complex, Rightside: Compe): Complex
+Operator(efiSice: Fioat, RightSie: Complex): Complex
+Operator(fisice: Conplex, Rightside: Float): Complex
+Operator/(LefiSide: Complex, RightSide: Compiex): Complex
+setfResl: Foat)

+5et(Resl: Foat, Inaginary: Fot)

+SeReal(Real: Foat)

+Setimagiary (maginary: Float)

=cels

+earalcels)

+GettiumberOfcolumns(): Integer

+GethiumberOfRons(): Integer

+Generichatrix()

+GenerixVatix(Rows: Integer = 2, Columns: Integer = 2)

+Genericatrx(Cels[J: MatrinType)

+Getialue(Row: Integer, Column: Integer): MatType raises Invalidatrx_ocatonException

+Operator +(LefiSide: GenericMatri, RightSide: MatrixType): GenericMatrx raises MatrixSizeMsmatchException
+Operator-{LefiSide: GenericMarix, RightSide: MatrixType): GenericMatrx raies MatrxSizeMismatchException
+Operator*(LeftSide: GenericMatrix, RightSide: MatrixType): Generichetrx raises MatrixSizeMsmatchException
+Operator*(LefiSide: double, RightSide: MatrixType): GenericMatrix raises MetrixSizeMsmatchException
+Operator=(Value: GenericMatrx): Genericatrx rases MatrxSaeMismatchexcepton

{LefiSide: Genericiatx, RightSde: Generichatrn): Boolesn

efiSice: GenericMiatrx, RightS de: Generichatrn): Soolean

+Set(Values: MatrxTypeL])

+5etialus(Ron: Integer, Column: Integer, Value: MatrType) rases InvaliatixLocationgxcepton

Complextiatrix

Derives from
Generciatx<Conplex>
- +Operator +LeftSide: Complex, RightSide: Complex): Complex

“+one(: Complexiatrix

+Operator-{LefiSide: Complex, RightSide: Complex): Complex
+Operator [efisice: Complex, Rightside: Compe): Complex
+Operstor(=fiSice: Fioat, RightSide: Complex): Complex
+Set(Cels: Complex[])

Figure 48. Classical utilities of Cove, required for the C# implementation.
5.6. Implementation of a Qubit in C#

Part of the challenge of implementing the framework is preserving the generic nature of the framework and not impose constraints due the language and method of the implementation.

The implementation is written in C# utilizing the .NET 3.5 framework, which is the latest available (as of December 2007). Part the reason for this selection is that it is one of the most recent languages and updates, so it performs classical computation quite well. C# is a language developed by Microsoft and is largely based on Java and C++. Thus by implementing it in C# the code will be quite readable for C, C++, and Java programmers. Additionally the interfaces have also been implemented in Python to illustrate that the framework is in face generic. The source code is available for download, see Appendix C: Electronic Resources. The source code of the base library, which is primarily interfaces and abstract base classes, is included in the appendixes (Appendix A: Source Code of Cove Base Library in C# and Appendix B: Source Code of Cove Base Library in Python).
Namespaces are also utilized in the C# implementation, helping to encapsulate pieces along with standard object oriented coding practices [79]. Since the focus is on good design of the framework and not the implementation, the implementation simulates a local quantum resource for simplicity. When practical quantum computers are realized it will be easy to switch from the simulation to actual quantum computation: the user merely has to change the “using” statement from the simulation to the actual library.

The random number generation warrants mention. There is a static instance that is shared across all simulated qubits. This generator is seeded with the value of the current timer. If the random number generator was specific to each qubit, and multiple qubits are created at once, they would utilize the same sequence of random numbers- which is far from ideal. By utilizing a static generator this problem is avoided.
Hungarian notation is utilized within the implementation, but for clarity not on method parameters. C# is a strongly typed language, so Hungarian notation does not provide much functionally. Once familiar with it, it enhances the readability of the code. Source code ends up being read many more times than it is written, so readability is an often neglected aspect of code. In accordance with the idea of good readability, the code is also well commented.

The operation Qubit.Measure() returns an integer. Integers can be cast to Booleans, but not vice versa in C#. This means that integers may be easier for potential users to work with. This decision also leads to less ambiguity.

C# does not allow for static classes to implement interfaces or derive from classes other than object. This means that regular classes have to be written in order to implement that types specified in the base library. For ease of user a static Operations class is defined which has static instances of all operations. Thus any operation can easily be applied to qubits:

cExampleQubit.ApplyOperation(Operations.Not);
Additionally a more compact form is provided for the common operations. This form cannot be used with arbitrary or user defined operations, only the supplied ones.
cExampleQubit.OperationNot();
The implementation also provides good insight to the design of the framework as certain issues do not arise until code is actually written. Consequently the implementation provides valuable analysis on how the framework will be used.

5.7. Verification that the Design Satisfies the Properties and Design Rationale
This section gives verification that the design in 5.5 satisfies the functional and usability properties outlined in 5.3 and 5.4 in addition to rationale design decisions.
5.7.1. How Common Flaws are Avoided

As mentioned in previous sections, existing proposals suffer from one or more common flaws that make them difficult to use in a commercial software development environment. The following is a list of those fatal flaws, and how the proposal (Cove) does not violate them.

· Foreign techniques – Cove is designed for use with popular object oriented languages, which are familiar to most commercial programmers, unlike functional languages. No mathematical notation is utilized that cannot be expressed on a keyboard. Furthermore no proofs are required.

· Not scalable – While not a solution to all scalability problems, object oriented approaches help alleviate some of the problems such as bloat and complexity that arise in large scale systems developed with procedural techniques. By utilizing the object oriented approach scalability is emphasized since a user can focus only on the specific parts that will be utilized or extended.

· Proprietary language – Cove is built as a framework upon existing classical languages. In the current incarnation it is implemented in C#, which means the libraries can be used by any other .NET language such as Visual Basic. To clearly show that the design of Cove is as language independent as possible, the interfaces are also supplied in Python (Appendix B: Source Code of Cove Base Library in Python).

· Difficult to integrate with existing software- By their very nature frameworks are built on top of existing languages. By utilizing objects in those languages, Cove can integrate with existing software. Furthermore Cove has been designed with various implementations in mind, such as swapping out a local simulation with one that runs on an actual quantum computer. This is possible because the interfaces and other common components are encapsulated in a common library which implementations are built against.

· Usability/Unconventional framework design- Common framework conventions have been followed wherever possible. Unlike many other quantum programming proposals, there is emphasis on usability. An example of this is the operations that can be applied to qubits. Methods are supplied that easily apply common operations, as in OperationHadamard(). For extendibility an ApplyOperation() method is also provided that works with any operation, including user defined ones. Furthermore this method is overloaded to also take an array of operations so that a list of operations can be applied in one call. The static class Operations is also provided so that users can reference operations by names instead of their mathematical representations, which are more verbose and hard to express in code.

· Runs only on a quantum computer- The fact that Cove has been implemented as a simulation on a classical computer via a framework built on classical languages clearly shows that it is not limited to quantum computers.

5.7.2. Verification of Functional Properties

This section details how Cove satisfies the functional properties outlined in the Qubit Functional Properties section.

Limitations:

· Limitation, no copying qubits: All copies of qubit classes are by reference and not value. No copy operation is supplied, so it is not possible to copy a qubit and violate the no-cloning theorem.

· Limitation, measurements cannot be undone: The measurement operation sets the qubit absolutely to
[image: image97.wmf]0

 or
[image: image98.wmf]1

. No previous state information is preserved, making it impossible to undo this collapse. Additionally the only operation to get the value of the qubit is the Measurement() operation, meaning that there is no public backdoor to examine the qubit.

· Limitation, reversible operations: Since the current subset of the research applies only to qubits, all operations are reversible. This will be more of a concern when multiple qubits are used in the actual project.

· Limitation, quantum resource must be local: In the current implementation the quantum resource is local. Trying to change it to anything other than localhost results in a ArgumentException being thrown.

Representation: The state of a qubit is represented internally by a matrix of complex numbers. This is specific to the classical local simulation- it is not included in the definition of a qubit in the base library.
Operations: The design of Cove provides all standard operations:

· IQubitOperation – The base interface for all operations.

· AbstractSimulatedOperation – The abstract base class for all simulated operations.
· OperationSGate / IOperationSGate – The S gate.

· OperationHadamard / IOperationHadamard – The Hadamard gate to place qubits in superposition of
[image: image99.wmf]0

 and
[image: image100.wmf]1

.

· OperationIdentity / IOperationIdentity – The identity operation. While it doesn’t change the state of the qubit, it is included for completeness.

· OperationNot / IOperationNot – The Not operation, also known as the Pauli X gate.

· OperationTGate / IOperationTGate – The T gate.

· OperationYGate / IOperationYGate – The Y gate.

· OperationZGate / IOperationZGate – The Z gate.

By providing an interface for operations, users are also able to specify arbitrary operations.
Measurement: A measurement operation is supplied which collapses the qubit. The return value of this measurement operation is 1 or 0 since the qubit has been collapsed.
Accessing remote quantum resources: Unlike other programming proposals examined, Cove provides the ability to specify a remote quantum resource in accordance with Knill’s QRAM model. Much like the location of a remote file must be specified before it can be used, the location of the quantum resource must also be specified. Furthermore the location can also be specified at construction time.
5.7.3. Verification of Usability Properties

Consistent ordering of parameters: The qubit is the only unit of quantum information supplied in this limited design. As a result the consistent ordering of parameters does not apply.

Detailed names: The naming of all classes, methods, and parameters are detailed and contain no abbreviations. Hungarian notation is utilized with in the classes, but anything visible to the users does not use Hungarian notation in order to avoid confusing those not familiar with it. Unlike many other designs, obscure and hard to recognize abbreviations are not used.

Common prefixes: All interfaces are prefixed with “I”. All abstract base classes are prefixed wit “Abstract”. All operation classes begin with “Operation”.
Static operators: The operators are supplied as static methods since the operations do not differ between various instances.

No violations of limitations- No methods are provided which allow violations of the limitations of quantum computers.

Common base class- All objects in Cove derive from the common AbstractCoveObject base class. This provides a central location to put in any common members or methods.

Readable operation names: All operations supplied are given common names. For example, a user applies the OperationHadamard to a qubit instead of specifying the matrix representing it. This results in code that is much more readable and eases the burden on the programming.

Ability to create arbitrary operations- There is in an interface supplied in the base library which specifies what an operation must implement. Users can implement this interface to construct operations which are not supplied. Additionally the local simulation supplied also specifies an abstract base class for all operations.

Use of exceptions – Exceptions are provided and used throughout Cove. There is a common exception class CoveException, which all Cove exceptions are derived from. Use of this base class allows for users of the framework to handle any exception thrown by the framework by catching it.
Preventing mistakes, but not too restrictive- the qubit is a small subset of the project, so it is harder to gauge this usability attribute. Perhaps the clearest example of this is the access restrictions on objects. Access is only opened up as much as possible to use the classes. As an example the State variable on the Qubit class is private. If it were protected it could be incorrectly altered by derived classes, such a user deriving from qubit to add a method to perform a specific user operation. Having it private prevents users from altering the state outside of the public methods, on which input can be checked.
5.7.4. Design Rationale

The simulation supplied operates on AbstractSimulatedOperation derived objects instead of the more general interface IQubitOperation, which is specified in the method signature due to implementing the IQubit interface. The reason for this is that the classical implementation wouldn’t necessarily know how to apply other operations, actual quantum ones in particular. The state of a qubit may also be specified differently in different implementations. For example, an actual quantum computer would not specify a qubit via a matrix of complex numbers, which is what the current simulation expects.
This means that the ApplyOperation() method may throw an exception at run time if it is passed an object not derived from AbstractSimulatedOperation. This behavior runs slightly counter to strongly typed languages such as C# which prefer to catch these types of errors at compile time instead of run time. This is not necessarily a bad thing since this is how dynamically typed languages such as Python operate. If a method accepting only AbstractSimulatedOperation derived classes were provided then it would catch invalid objects at compile time. However, doing so would mean that the classical simulation would no longer be interchangeable with an actual one because they would no longer share the same interfaces. Thus the decision has been made to defer some errors to run time in order to maintain interchangeability between different implementations.
The ResetToOne() and ResetToZero() operations are specified in the common IQubit interface. There is also a ResetTo() method that can reset the qubit to an arbitrary state. For the same reasons that ApplyOperation() is restricted to AbstractSimulatedOperation derived objects, ResetTo() only operates on Complex objects, even though the interface is more general. The ResetTo() method also enforces the restraints of specifying a quantum state: that the two complex numbers squared must total 1. ResetTo() and the examination of the state via the ToString() operation are supplied primarily for testing and debugging of this project. It is anticipated that they’ll be limited or removed in the final project.
All components are placed in packages (libraries) with similar components in accordance with the encapsulation principle of object oriented programming. Future work would be to create another package for utilizing remote quantum resources, simulated or actual. Nonetheless, the base library takes this fact into account by having a Location attribute on the IQubit interface.
The qubit has a method to apply arbitrary operations, ApplyOperation(). As an example one would apply a Hadamard operation with the snippet TestQubit.ApplyOperation(Operations.Hadamard). A more concise notation is also provided, as in TestQubit.OperationHadamard(). Some reasons on why the two different methods are supported:

· The ApplyOperation() method allows the user to pass in any object that implements IQubitOperation. This means that the qubit works as is with user defined operations- no subclassing is needed to work with user defined operations. One can imagine users stringing together operations for various purposes, meaning that an algorithm could be performed just by passing in that user defined operation.

· If the operations were on only on the qubit itself as in TestQubit.OperationHadamard(), then the user would have to derive their own qubit class and implement the new operation- a potentially daunting refactoring task if the user has already written code using the supplied qubit class.
· The extensible method reduces the coupling between the operations and qubits, per commonly accepted object oriented design principles where low coupling is preferred [79]. Although it should be noted that the two are still coupled through the concise method.
· By specifying “Operation” in the syntax, all available operations show up in intellisense tools together- showing the programmer exactly what is available for quantum operations on a qubit. If the operations were just methods on a qubit the user would have to be intimately familiar or consult the documentation to know which methods were applying quantum operations. This detracts from the goal of usability for commercial programmers.

Thus users are provided with an extensible method to call arbitrary operations, and a concise way to call the common ones. The concise operations are all prefixed with “Operation” so that they are all grouped together in intellisense tools, allowing the developer to quickly see which operations are provided without having to consult the documentation.
The only quantum computing related operation on a qubit that returns anything is the Measure() operation. This decision is intentional. Operations do not return qubits because qubits cannot be copied in accordance with the no-cloning theorem, nor can they be observed without collapsing the state. So it isn’t possible to create a copy of a qubit, apply an operation, and return that. Additionally one can think of quantum computation as manipulating qubits without looking at them until the measurement is performed. Returning values runs counter to this idea of not looking at qubits until the end of the computation.

Methods are also provided to label the
[image: image101.wmf]0

and
[image: image102.wmf]1

 states of the qubit. This is primarily provided for convenience so that the user does not have to maintain this mapping outside of the Qubit class. This has shown to be useful, as in the quantum coin toss in section 5.7.5. Instead of having to equate
[image: image103.wmf]0

and
[image: image104.wmf]1

 with heads and tails, the labels can be set and the rest of the program carried out utilizing these labels.
5.7.5. Examples

The following are examples of using Cove to carry out quantum computation. These are based on methods within the static QubitExamples class within the Cove.Examples project, along with console output which is not included here. These examples help to show that Cove is very readable and simple to use.
Setting a qubit to
[image: image105.wmf]0

 and
[image: image106.wmf]1

:

Qubit ExampleQubit = new Qubit();

ExampleQubit.ResetToOne(); //reset to |0>
ExampleQubit.ResetToZero(); //reset to |1>
Applying a NOT operation to a qubit. First is the long form that can take an arbitrary operation. Second is the short form provided for common operations:
Qubit ExampleQubit = new Qubit();

ExampleQubit.ApplyOperation(Operations.Not); //long form
ExampleQubit.OperationNot(); //short form
Putting a qubit in superposition from
[image: image107.wmf]0

 (through the Hadamard operation) using the long form:

Qubit ExampleQubit = new Qubit();

ExampleQubit.ResetToZero();

ExampleQubit.ApplyOperation(Operations.Hadamard);

Putting a qubit in superposition from
[image: image108.wmf]0

 (through the Hadamard operation) using the short form:

Qubit ExampleQubit = new Qubit();

ExampleQubit.ResetToZero();

ExampleQubit.OperationHadamard();

Flipping a coin 1000 times and observing it. In this case it functions just like a classical coin. The reason this example does 1000 iterations is to show that the measurement does in fact collapse to both states fairly evenly:

Qubit Test = new Qubit("Heads", "Tails");

int iNumTosses = 1000;

int iHeads = 0;

int iTails = 0;

for (int i = 0; i < iNumTosses; i++)

{

 Test.ResetToZero(); //start at heads (0)

 Test.OperationHadamard(); //first toss

 if (Test.Measure() == 0)

 iHeads++;

 else

 iTails++;

}

Console.WriteLine("After " + iNumTosses.ToString() + " tosses. Heads: " + iHeads.ToString() + ", Tails: " + iTails.ToString());

Output from the single coin toss example:
After 1000 tosses: Heads: 534, Tails: 466

The quantum coin toss example from section 2.1.1. The coin starts at heads, is flipped twice without observing via a Hadamard operation, and will always be heads after the second toss. The long form of apply operations is used in this example.
Qubit Test = new Qubit("Heads", "Tails");

Test.ResetToZero(); //start at heads (0)

Console.WriteLine("Initial state: " + Test.ToStringWithLabels());

Test.OperationHadamard(); //first toss

Console.WriteLine("After one toss: " + Test.ToStringWithLabels());

Test.OperationHadamard(); //second toss

Console.WriteLine("After second toss: " + Test.ToStringWithLabels());

Console.WriteLine("Result after measurement: " + Test.MeasureWithLabel());

Output from the quantum coin toss example:

Initial state: (1 + 0i)|Heads> + (0 + 0i)|Tails>
After one toss: (0.707106781186547 + 0i)|Heads> + (0.707106781186547 + 0i)|Tails>
After second toss: (1 + 0i)|Heads> + (0 + 0i)|Tails>
Result after measurement: Heads
All of the examples given are written against a specific implementation of Cove, in this case the local simulation. One could switch to a different implementation of Cove and the code in the above examples would remain the same. The only change that would have to be made would be to switch the reference and imports to the new library since the fully qualified names are not used. The fully qualified name for the local simulation of the qubit would be Cove.LocalSimulation.Qubit. It is also possible to mix and match the implementations by coding against interfaces, as in this example of putting a qubit in superposition via the long form of the Hadamard operation for both the local simulation and local quantum computer:
Cove.Base.IQubit Test = null;

//using the local simulation
Test = new Cove.LocalSimulation.Qubit();

Test.ResetToZero();

Test.OperationHadamard();

//using the local quantum computer (does not exist)
Test = new Cove.LocalQuantum.Qubit();

Test.ResetToZero();

Test.OperationHadamard();

In this case Test can be a qubit from any library that implements the base library, making it possible to mix implementations to a certain extent- as long as the interface is coded against and types match what the implementation expects. For most cases it is anticipated that users will use only one implementation at a time. This means that all of the examples given could run against any implementation with ideally no changes other than changing the reference.

Note that in all these examples the initial ResetToZero() is provided for readability. The default state of the qubit is
[image: image109.wmf]0

, so this statement is not required. As stated in the Limitations of Quantum Computing section, one could not actually determine the mixed state of a qubit- observation would collapse it. The ability to do so is provided in the local simulation in order to prove correctness and aid students of quantum computing.
5.8. Analysis of Qubit Project

This subset of the actual research, the qubit, unlike the corresponding classical unit of information, the bit, is far from trivial. A classical bit has two operations: NOT and NOOP (no operation). The supplied framework provides 7 common operations that are defined in the literature and allows users to construct their own. Further strengthening the claim, the project consists of a few dozen source code files and a few thousand lines of code.
Carrying out the implementation and examples proved to be more useful than anticipated. Writing actual code it became apparent that certain operations would be useful. An example is the ResetTo() operation on a qubit which sets it to an arbitrary state. Originally only a ResetToOne() and ResetToZero() operation were supplied. While writing the example it occurred that a user might want to set the qubit to a different state without using an operation, so the ResetTo() method was added.
On further considerations, the framework could also be extended in some ways:

· Allow a qubit to be cast to a Boolean or integer. This would be the same as measuring the qubit and casting the result to the appropriate data type.

· Possibly supply an operation to reset the qubit to one or zero with the Hadamard gate then applied.

· Expand the list of overloaded constructors to initialize the qubit to something other than the default state of
[image: image110.wmf]0

.

5.9. Comparison of Cove to Other Proposals

The following is a brief comparison of how various quantum programming tasks are carried out in Cove and in other proposals.

[image: image111.png]qcl> qureg a[1l; qureg b[1l; // allocate 2 qubits
qel> Rot(-pi/3,a); // rtotate 1st qubit
qcl> Mix(b); // Hadamard Transformation

Figure 49. Example of a rotation and Hadamard transformation in Omer’s QCL, from [59].
The notation of QCL is easy enough to read compared to more mathematical methods. There are still a few areas for improvements however:
· A procedural approach is utilized in this instead of an object oriented one. While this itself is not a problem, it does mean that user created methods could incorrectly modify the state of a qubit, possibly simulated. This is one of the strong arguments for utilizing the object oriented approach, as Cove does.

· The method names are abbreviated, decreasing readability. “Rotation” is clearer than the abbreviation “Rot”. The name “Mix” for performing the Hadamard transformation is also unclear and ambiguous, especially when there are a large number of functions. Cove avoids the use of abbreviations as in the ApplyOperation() method on the qubit. While the names of Cove could be considered to have ambiguous names, but the use of an object oriented approach lessens this since the methods apply to specific classes. While the method OperationNot() in could be considered ambiguous by itself, the fact that it exists as a method on the qubit breaks this ambiguity.

· The –pi/3 is could be considered a “magic number” and would better be replaced by a constant. The purpose of this rotation is unclear unless one is very familiar with the quantum computing. This however merely concerns the example and not the language. In Cove the common rotations are given names such as OperationYGate, which has a clearer meaning, rotation about the Y axis in the physical implementation.
[image: image112.png]var x: g(B), i:Be
In(x) 3
Fin[A] (i)

Figure 50. A single quantum coin toss in Sanders and Zuliani’s qGCL, from [51].
There are several usability flaws with this example in qGCL:
· Without being very familiar with qGCL or a good deal of comments, it is very hard to tell what this code snippet carries out- and it is only 3 lines of code.
· The mathematical notation is difficult to input on a traditional computer without a special interface. In a case such as this a programmer may spend time trying to express what they want to carry out in the notation at the expense of focusing on the steps to solve the problem. An easy to use method of programming should do as little to slow down the user as possible.

For comparison, here is an initialization of a qubit and a single coin toss in Cove:

Qubit Test = new Qubit("Heads", "Tails");

Test.OperationHadamard(); //first toss
Test.Measure()

These examples show that while existing techniques can functionally carry out quantum programming, they suffer from problems in usability. As the examples help to illustrate, this is the focus of Cove: a usable quantum programming framework.
5.10. Summary of Qubit Project

The proposed framework, Cove, is a valid research project due to the fact that it makes the following contributions:

· Incorporates usability into the design, instead of focusing on only the functional properties as in many other proposals.
· Summarizes framework design literature. While summaries of quantum programming have been encountered [97], none have been encountered on framework design.

· A list of functional properties that a quantum programming method must satisfy.

· The fact that the quantum resource may be remote is taken into account.

· Provides a local simulation so limited quantum computation can be explored.

As this subset of the project, the qubit, shows, this project is far from trivial. While non-trivial, the subset is also meant to show that the project is doable in the given timeframe.
6. Conclusion

Quantum computers mimic nature more accurately than classical computer and represent a fundamental change in the way computing is done- quantum computers do not fall under the computing machines Alan Turing envisioned in the 1930s that have been the model for computation ever since. As such, they are able to perform certain types of computations that are not efficient on classical computers. Some examples of problems efficiently solvable by quantum computers include unsorted search, factoring, and perhaps not surprisingly, simulation of quantum systems.
While much work remains in order for quantum computers to become viable commercially, it is largely believed that this will occur in the early decades of the twenty first century. Nonetheless, quantum computers and algorithms are of little use if they cannot be utilized in software. This paper is a proposal for a practical programming framework for quantum computing. The practical part of the proposal is key- the goal is for the framework to be as simple to use as possible for current commercial programmers. The existing proposals for quantum computer programming suffer from flaws which make them impractical for existing commercial programmers, who write a majority of software in use.

It is the goal that the framework proposed here will not suffer from these flaws. By doing so we have a chance to experiment with and write software for quantum computers before they appear commercially. This allows us to identify and resolve software problems as they pertain to quantum computers ahead of their introduction instead of learning as we go, as has largely been the case with classical computers.
7. Appendix A: Source Code of Cove Base Library in C#
The current implementation of Cove is a local simulation written in C# utilizing the .NET 3.5 framework. The following is the source code of the interfaces. The complete code is available for download, see Appendix C: Electronic Resources for details.
namespace Cove.Base

{

 /// <summary>

 /// Base class for all classes in Cove

 /// </summary>

 public abstract class AbstractCoveObject

 {

 /// <summary>

 /// Get the string representation of the object

 /// </summary>

 public override abstract string ToString();

 }

 /// <summary>

 /// The base class for all exceptions in Cove

 /// </summary>

 public class CoveException : System.Exception

 {

 /// <summary>

 /// Default constructor

 /// </summary>

 public CoveException() :base()

 {

 }

 /// <summary>

 /// Constructor that also sets the message exception

 /// </summary>

 /// <param name="Message">The message of the exception</param>

 public CoveException(string Message)

 : base(Message)

 {

 }

 }

 /// <summary>

 /// This exception is thrown when the implementation is incomplete or

 /// reaches an unexpected state. Ideally this exception should never

 /// occur.

 /// </summary>

 public class ImplementationException : CoveException

 {

 /// <summary>

 /// Default constructor for the exception

 /// </summary>

 public ImplementationException()

 : base()

 {

 }

 /// <summary>

 /// Constructor to set the message of the exception at time

 /// of construction.

 /// </summary>

 /// <param name="Message">The message of the exception</param>

 public ImplementationException(string Message)

 : base(Message)

 {

 //this.Message = Message;

 }

 } //end of class
 /// <summary>

 /// The interface that all operations on qubits must implement

 /// </summary>

 public interface IQubitOperation

 {

 /// <summary>

 /// Return the matrix that represents this operation

 /// </summary>

 /// <returns>The matrix representing this operation</returns>

 object GetOperationMatrix();

 }

 /// <summary>

 /// Interface for all things that perform the Hadamard operation

 /// </summary>

 public interface IOperationHadamard : IQubitOperation

 {

 }

 /// <summary>

 /// Interface for performing the identity operation

 /// </summary>

 public interface IOperationIdentity : IQubitOperation

 {

 }

 /// <summary>

 /// Interface for performing the Not operation

 /// </summary>

 public interface IOperationNot : IQubitOperation

 {

 }

 /// <summary>

 /// Interface for performing the S Gate (phase gate)

 /// </summary>

 public interface IOperationSGate : IQubitOperation

 {

 }

 /// <summary>

 /// Interface for performing the T gate operation (pi / 8 phase gate)

 /// </summary>

 public interface IOperationTGate : IQubitOperation

 {

 }

 /// <summary>

 /// Interface for performing the Y gate operation

 /// </summary>

 public interface IOperationYGate : IQubitOperation

 {

 }

 /// <summary>

 /// Interface for performing the Z gate operation

 /// </summary>

 public interface IOperationZGate : IQubitOperation

 {

 }
 /// <summary>

 /// Interface definition of a qubit

 /// </summary>

 public interface IQubit

 {

 /// <summary>

 /// Returns the location of the quantum resource

 /// </summary>

 /// <returns>

 /// The location of the quantum resource

 /// </returns>

 string GetLocation();

 /// <summary>

 /// Set the location of the quantum resource

 /// </summary>

 /// <param name="Location">

 /// The location of the quantum resource</param>

 void SetLocation(string Location);

 /// <summary>

 /// Measure the qubit- collapses it absolutely to

 /// |0> xor |1>

 /// </summary>

 /// <returns>The value of the qubit after measurement-

 /// 0 xor 1.</returns>

 int Measure();

 /// <summary>

 /// Measure the qubit- collapses it absolutely to |0> xor |1>.

 /// Instead of returning 0 or 1 like Measure() it returns the

 /// string label of the result.

 /// </summary>

 /// <returns>The string label of what the qubit collapsed to.

 /// </returns>

 string MeasureWithLabel();

 /// <summary>

 /// Apply the specified operation to the qubit

 /// </summary>

 ///<param name="Operation">The operation to apply</param>

 void ApplyOperation(IQubitOperation Operation);

 /// <summary>

 /// Apply mulitiple operations to a qubit

 /// </summary>

 /// <param name="Operations">Operations to apply</param>

 void ApplyOperations(IQubitOperation[] Operations);

 /// <summary>

 /// Get the representation of one

 /// </summary>

 /// <returns>The representation of one</returns>

 string GetLabelOne();

 /// <summary>

 /// Get the representation of zero

 /// </summary>

 /// <returns>The representatio of zero</returns>

 string GetLabelZero();

 /// <summary>

 /// Perform the Hadamard operation on the qubit. This operation is

 /// also known as Hadamard-Walsh and the square root of not.

 /// </summary>

 void OperationHadamard();

 /// <summary>

 /// Perform the identity operation on the qubit. This does not

 /// change the state of the qubit.

 /// </summary>

 void OperationIdentity();

 /// <summary>

 /// Perform the Not operation on the qubit. This operation is also

 /// known as the X gate.

 /// </summary>

 void OperationNot();

 /// <summary>

 /// Perform the S gate operation, the phase gate, on the qubit.

 /// </summary>

 void OperationSGate();

 /// <summary>

 /// Perform the T gate operation, the pi/8 phase gate, on

 /// the qubit.

 /// </summary>

 void OperationTGate();

 /// <summary>

 /// Perform the Y Gate operation on the qubit

 /// </summary>

 void OperationYGate();

 /// <summary>

 /// Perform the Z Gate operation on the qubit.

 /// </summary>

 void OperationZGate();

 /// <summary>

 /// Reset the qubit to an arbitrary state

 /// </summary>

 /// <param name="Zero">Value of zero</param>

 /// <param name="One">Value of one</param>

 void ResetTo(object Zero, object One);

 /// <summary>

 /// Reset the qubit to |0>

 /// </summary>

 void ResetToZero();

 /// <summary>

 /// Reset the qubit to |1>

 /// </summary>

 void ResetToOne();

 /// <summary>

 /// Set the label for one

 /// </summary>

 /// <param name="LabelOne">The desired label for one</param>

 void SetLabelOne(string LabelOne);

 /// <summary>

 /// Set both the label for |0> and label for |1> in one call

 /// </summary>

 /// <param name="LabelZero">The label of zero</param>

 /// <param name="LabelOne">The label of one</param>

 void SetLabels(string LabelZero, string LabelOne);

 /// <summary>

 /// Set the label for zero

 /// </summary>

 /// <param name="LabelZero">The desired label for zero</param>

 void SetLabelZero(string LabelZero);

 /// <summary>

 /// Get the string representation of the qubit

 /// </summary>

 /// <returns>String representation of the qubit</returns>

 string ToString();

 /// <summary>

 /// Get the string representation with the labels instead of

 /// |0> and |1>

 /// </summary>

 /// <returns>The string representation of the qubit</returns>

 string ToStringWithLabels();

 } //end of interface
} //end of namespace
8. Appendix B: Source Code of Cove Base Library in Python

Python is a dynamic language, unlike languages such as C# and Java. Consequently it is not possible to verify that methods exist on an object until run time. As a result constructs such as interfaces are not provided in Python as they are largely used to verify at compile time that a class implements certain behavior. While there are not interfaces in Python, abstract base classes can be used in their place. The abstract base class can specify methods and raise exceptions. Python supports multiple inheritance, so implementing multiple interfaces is not a problem. Tools such as pychecker (http://pychecker.sourceforge.net/) help to enforce that classes implement methods defined in the abstract base classes.
Part of the reason the base library is supplied in two languages is to show that the design is not too strongly tied to one language. Furthermore, it helps make the project accessible to more readers since readers may be familiar with one of the languages and not the other. See Appendix C: Electronic Resources for how to obtain the entire source code.
class AbstractCoveObject:

 '''

 The common base class for all cove objects

 '''

 def ToString(self):

 '''

 Get the string representation of the object

 @return: string

 '''

 raise NotImplementedError("Needs to be implemented in a subclass")

class CoveException(Exception):

 '''

 The base class for all exceptions in Cove

 '''

 pass

class ImplementationException(CoveException):

 '''

 This exception is thrown when the implementation is incomplete or reaches

 an unexpected state. Ideally this exception should never occur.

 '''

 pass

class IQubitOperation:

 '''

 The interface that all operations on qubits must implement

 '''

 def GetOperationMatrix(self):

 '''

 Return the matrix that represents this operation

 @return: The matrix representing the state

 '''

 raise NotImplementedError("Needs to be implemented")

class IOperationHadamard(IQubitOperation):

 '''

 Interface for all things that implement the Hadamard operation.

 '''

 pass

class IOperationIdentity(IQubitOperation):

 '''

 Interface for performing the identity operation

 '''

 pass

class IOperationNot(IQubitOperation):

 '''

 Interface for performing the Not operation

 '''

 pass

class IOperationSGate(IQubitOperation):

 '''

 Interface for performing the S Gate operation (phase gate)

 '''

 pass

class IOperationTGate(IQubitOperation):

 '''

 Interface for performing the T Gate operation (pi / 8 phase gate)

 '''

 pass

class IOperationYGate(IQubitOperation):

 '''

 Interface for performing the Y gate operation

 '''

 pass

class IOperationZGate(IQubitOperation):

 '''

 Interface for performing the Z gate operation

 '''

 pass

class IQubit:

 '''

 Interface definition of a qubit

 '''

 public interface IQubit

 {

 def GetLocation(self):

 '''

 Returns the location of the quantum resource

 @return: The location of the quantum resource

 '''

 raise NotImplementedError("Needs to be implemented")

 def SetLocation(self, Location):

 '''

 Set the location of the quantum resource

 @param Location: The location of the quantum resource

 @type Location: string

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def Measure(self):

 '''

 Measure the qubit- collapses it absolutely to |0> xor |1>

 @return: The value of the qubit after measurement- 0 xor 1.

 '''

 raise NotImplementedError("Needs to be implemented")

 def MeasureWithLabel(self):

 '''

 Measure the qubit- collapses it absolutely to |0> xor |1>.

 Instead of returning 0 or 1 like Measure() it returns the

 string label of the result.

 @return: The string label of what the qubit collaped to.

 '''

 raise NotImplementedError("Needs to be implemented")

 def ApplyOperation(self, Operation):

 '''

 Apply the specified operation to the qubit

 @param Operation: The operation to apply

 @type Operation: IQubitOperation

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def ApplyOperations(self, Operations):

 '''

 Apply mulitiple operations to a qubit

 @param Operations: Operations to apply

 @type Operations: List of IQubitOperation objects

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def GetLabelOne(self):

 '''

 Get the representation of one

 @return: The representation of one (string)

 '''

 raise NotImplementedError("Needs to be implemented")

 def GetLabelZero(self):

 '''

 Get the representation of zero

 @return: The representatio of zero (string)

 '''

 raise NotImplementedError("Needs to be implemented in a subclass")

 def OperationHadamard(self):

 '''

 Perform the Hadamard operation on the qubit. This operation is

 also known as Hadamard-Walsh and the square root of not.

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def OperationIdentity(self):

 '''

 Perform the identity operation on the qubit. This does not

 change the state of the qubit.

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def OperationNot(self):

 '''

 Perform the Not operation on the qubit. This operation is also

 known as the X gate.

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def OperationSGate(self):

 '''

 Perform the S gate operation, the phase gate, on the qubit.

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def OperationTGate(self):

 '''

 Perform the T gate operation, the pi/8 phase gate, on

 the qubit.

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def OperationYGate(self):

 '''

 Perform the Y Gate operation on the qubit

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def OperationZGate(self):

 '''

 Perform the Z Gate operation on the qubit.

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def ResetTo(self, Zero, One):

 '''

 Reset the qubit to an arbitrary state

 @param Zero: Value of zero

 @type Zero: object

 @param One: Value of one

 @type One: object

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def ResetToZero(self):

 '''

 Reset the qubit to |0>

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def ResetToOne(self):

 '''

 Reset the qubit to |1>

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def SetLabelOne(self, LabelOne):

 '''

 Set the label for one

 @param LabelOne: The desired label for one

 @type LabelOne: string

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def SetLabels(self, LabelZero, LabelOne):

 '''

 Set both the label for |0> and label for |1> in one call

 @param LabelZero: The label of zero

 @type LabelZero: string

 @param LabelOne: The label of one

 @type LabelZero: string

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def SetLabelZero(self, LabelZero):

 '''

 Set the label for zero

 @param LabelZero: The desired label for zero

 @type LabelZero: string

 @return: void

 '''

 raise NotImplementedError("Needs to be implemented")

 def __str__(self):

 '''

 Get the string representation of the qubit

 @return: String representation of the qubit

 '''

 raise NotImplementedError("Needs to be implemented")

 def ToString(self):

 '''

 Get the string representation of the qubit.

 @return: String representation of the qubit

 '''

 raise NotImplementedError("Needs to be implemented")

 def ToStringWithLabels(self):

 '''

 Get the string representation with the labels instead

 of |0> and |1>

 @return: The string representation of the qubit

 '''

 raise NotImplementedError("Needs to be implemented")
9. Appendix C: Electronic Resources

Electronic resources pertaining to this project can be obtained from https://cove.purkeypile.com/trac. From the “Timeline” tab you can view the most recent changes. The home page (accessible via the “wiki” tab) also contains some links to specific items:
· Latest drafts of proposals and presentations

· Source code

· UML diagrams

· To do list (tickets)

· Blog entries

All of the documents and source code are also available for download from the Subversion repository. The URLs are case sensitive and are https, not http.
· Documents: https://cove.purkeypile.com/PurkSVN/Trunk/ResearchDocs
· C# source: https://cove.purkeypile.com/PurkSVN/Trunk/Cove-CSharp

· Python source: https://cove.purkeypile.com/PurkSVN/Trunk/Cove-Python

Tortoise SVN is an excellent Subversion client for Windows that will allow you to download the files. You can obtain Tortoise from: http://tortoisesvn.tigris.org/. The “Browse Source” from the website also lets you view the source code, but not download it.
A valid account is required to view the site or download from the repository, these are case sensitive:

Username: reader

Password: CoveC3T5U7

The SSL certificate is not yet valid, so the warnings about it not being validated are to be expected for now.
The author can also be contacted via email at mpurkeypile@acm.org.

10. References

[1]
T. J. Bergin, "A History of the History of Programming Languages," Communications. ACM, vol. 50, p. 5, May 2007 2007.

[2]
E. Knill, "Conventions for Quantum Pseudocode," Los Alamos National Laboratory LAUR-96-2724, 1996.

[3]
D. Deutsch, "Quantum theory, the Church-Turing principle and the universal quantum computer," Proceedings of the Royal Society of London, vol. A, pp. 97-117, 1985.

[4]
G. Fairbanks, D. Garlan, and W. Scherlis, "Design fragments make using frameworks easier," in Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications Portland, Oregon, USA: ACM, 2006.

[5]
W. E. Halal, "Technology’s Promise: Expert Knowledge on the Transformation of Business and Society," 2007.

[6]
P. Strathern, The Big Idea: Turing and the Computer, 1 ed. New York, NY: Doubleday, 1997.

[7]
A. Turing, "On Computable Numbers, with an Application to Entscheid-ungsproblem," Proc. London Math Society, vol. 42, pp. 230-265, 1936.

[8]
I. Burda, Introduction to Quantum Computation, 1 ed. Boca Raton, FL: Universal Publishers, 2005.

[9]
M. Hivensalo, Quantum Computing, 2 ed. Berlin: Springer, 2004.

[10]
P. Kayne, R. Laflamme, and M. Mosca, An Introduction to Quantum Computing. New York City, New York: Oxford University Press, 2007.

[11]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 1 ed. Cambridge, UK: Cambridge University Press, 2000.

[12]
J. Al-Khalili, Quantum, 1 ed. London: Weidenfeld & Nicolson, 2003.

[13]
R. Hillmer and P. Kwiat, "A Do-It-Yourself Quantum Eraser," in Scientific American, May 2007.

[14]
L. M. Ionescu, Q++ and A Non-Standard Model, 1 ed. Victoria, BC, Canada: Trafford Publishing, 2007.

[15]
H. Everett, ""Relative State" Formulation of Quantum Mechanics," Reviews of Modern Physics, vol. 29, July 1957 1957.

[16]
P. Byrne, "The Many Worlds of Hugh Everett," in Scientific American. vol. 297, 2007, pp. 98-105.

[17]
D. Deutsch, The Fabric of Reality, 1 ed. London: Penguin Books, 1997.

[18]
K. Krane, Modern Physics, 1 ed. New York, NY: John Wiley & Sons, 1983.

[19]
L. Spector, Automatic Quantum Computer Programming: A Genetic Programming Approach, 1 ed. New York, NY: Springer Science and Business Media, LLC, 2004.

[20]
D. C. Lay, Linear Algebra and Its Applications, 1 ed. Reading, MA: Addison-Wesley, 1997.

[21]
J. Stewart, Calculus, 3 ed. Pacific Grove, CA: Brooks/Cole Publishing Company, 1995.

[22]
N. D. Mermin, Quantum Computer Science: An Introduction, 1 ed. Cambridge, UK: Cambridge University Press, 2007.

[23]
D. Bacon and D. Leung, "Toward a World with Quantum Computers," Communications of the ACM, vol. 50, pp. 55-59, September 2007 2007.

[24]
D. D. Awschalom, R. Epstein, and R. Hanson, "The Diamond Age of Spintronics," in Scientific American, 1 ed. vol. 297, 2007, pp. 84-91.

[25]
R. Van Meter, W. J. Munro, K. Nemoto, and K. M. Itoh, "Arithmetic on a distributed-memory quantum multicomputer," Journal on Emerging Technologies in Computer Systems, vol. 3, pp. 1-23, 2008.

[26]
S. Loepp and W. K. Wooters, Protecting Information: From Classical Error Correction to Quantum Cryptography, 1 ed. New York, NY: Cambridge University Press, 2006.

[27]
G. Johnson, A Shortcut Through Time: The Path to the Quantum Computer, 1 ed. New York, NY: Vintage Books, 2003.

[28]
R. P. Feynman, "Simulating Physics with Computers," International Journal of Theoretical Physics, vol. 21, 1982.

[29]
R. P. Feynman, Feynman Lectures on Computation, 1 ed. Southampton, UK: Westview, 1996.

[30]
J. Brown, The Quest for the Quantum Computer, 1 ed. New York, NY: Touchstone, 2000.

[31]
P. W. Shor, "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer," SIAM Journal on Computing, vol. 26, p. 25, October 1997 1997.

[32]
S. Bettelli, T. Calarco, and L. Serafini, "Toward an architecture for quantum programming," The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, vol. 25, p. 19, August 2003 2003.

[33]
C. Zalka, "Simulating Quantum Systems on a Quantum Computer," Procedings of the Royal Society: Mathmatical, Physical & Engineering Sciences, vol. 454, p. 10, January 8, 1998 1998.

[34]
L. K. Grover, "A fast quantum mechanical algorithm for database search," Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 212-219, 1996.

[35]
G. J. Milburn, The Feynman Processor: Quantum Entanglemeent and the Computing Revolution, 1 ed. New York, NY: Basic Books, 1998.

[36]
M. Hivensala, Quantum Computing, 2 ed. Berlin: Springer, 2004.

[37]
E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. S. Jr., and S. Tobin-Hochstadt, "The Fortress Language Specification Version 0.618," Sun Microsystems, Inc., 2005.

[38]
Cray, "Chapel Language Specification 0.702," Cray Inc.

[39]
Cray, "Chapel Programming Language Homepage." vol. 2007, C. Inc, Ed.: University of Washington.

[40]
IBM, "The Experimental Concurrent Programming Language (X10)." vol. 2007: Source Forge.

[41]
R. Rabbah, W. Thies, M. Gordon, J. Sermulins, and S. Amarasinghe, "High-Productivity Stream Programming For High-Performance Systems," in Nineth Annual High Performance Embedded Computing Workshop (HPEC) Lincoln, MA, 2005.

[42]
W. Thies, M. Karczmarek, and S. Amarasinghe, "StreamIt: A Language for Streaming Applications," in Int. Conf. on Compiler Construction (CC), 2002, p. 17.

[43]
J. Pontin, "A Giant Leap Forward in Computing? Maybe Not ". vol. 2007 New York, NY: New York Times, 2007.

[44]
M. Yang, "Scientists Express Skepticism Over Quantum Computer." vol. 2007: Daily Tech, 2007.

[45]
D-Wave, "Welcome to D-Wave Systems." vol. 2007: D-Wave, 2007.

[46]
C. Sagan, Billions & Billions: Thoughts on Life and Death at the Brink of the Millennium, 1 ed. New York, NY: Ballantine Books, 1997.

[47]
D. Deutsch and R. Jozsa, "Rapid Solution of Problems by Quantum Computation," University of Bristol 1992.

[48]
B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, 1 ed. New York, NY: John Wiley & Sons, Inc., 1994.

[49]
D. R. Simon, "On the Power of Quantum Computation," Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 116-123, 1994.

[50]
S. Shannon, Trends in Quantum Computing Research, 1 ed. New York, NY: Nova Science Publishers, Inc, 2006.

[51]
J. W. Sanders and P. Zuliani, "Quantum Programming," Proceedings of the 5th International Conference on Mathematics of Program Construction, vol. Lecture Notes In Computer Science; Vol. 1837, p. 19, 2000.

[52]
E. W. Dijkstra, "Guarded commands, nondeterminacy and formal derivation of programs," Commun. ACM, vol. 18, pp. 453-457, 1975.

[53]
B. Cannon, "Guido, Some Guys, and a Mailing List: How Python is Developed." vol. 2007: Python.org, 2007.

[54]
R. W. Sebesta, Concepts of Programming Languages, 5 ed. Boston, MA: Addison-Wesley, 2002.

[55]
NCITS, "International Standard 14882 - Programming Language C++." vol. 2007: International Committe for Information Technology Standards, 1998.

[56]
B. Omer, "A Procedural Formalism for Quantum Computing," in Theoretical Physics. vol. Masters Vienna: Technical University of Viena, 1998, p. 93.

[57]
B. Omer, "Procedural Quantum Programming," AIP Conference Proceedings, vol. 627, pp. 276-285, 2001.

[58]
B. Omer, "Structured Quantum Programming," in Information Systems. vol. Ph.D. Vienna: Technical University of Vienna, 2003, p. 130.

[59]
B. Omer, "Classical Concepts in Quantum Programming," Internation Journal of Theoretical Physics, vol. 44, pp. 943-955, July 2005 2004.

[60]
B. Omer, "QCL - A Programming Language for Quantum Computers: Source and Binaries," 0.6.3 ed. vol. 2007: Omer, Bernhard, 2006, p. Source and binary downloads of the QCL interpreter.

[61]
S. Blaha, "Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language," in Cosmos and Consciousness, 1 ed: Janus Associates Inc., 2002, p. 292.

[62]
A. Markus, "Quantum computing in Fortran," SIGPLAN Fortran Forum, vol. 23, pp. 5-11, 2004.

[63]
G. V. Wilson, Practical Parallel Programming, 1 ed. Cambridge Massachusetts: The MIT Press, 1995.

[64]
J. Carini, "A simulation of quantum logic gates and qubits using Ruby," J. Comput. Small Coll., vol. 19, pp. 337-338, 2004.

[65]
Python.org, "Thread State and the Global Interpreter Lock," in Python/C API Reference Manual. vol. 2007: Python.org, 2006.

[66]
K. Svore, A. Cross, A. Aho, I. Chuang, and I. Markov, "Toward a Software Architecture for Quantum Computing Design Tools," in Workshop on Quantum Programming Languages Turku, Finland, 2004.

[67]
R. Tucci, "Compiler for a Quantum Computer," United States, 2002.

[68]
R. Tucci, "Qubiter," 1.1 ed, 2002, p. Qubiter1.1 is a free computer program pertaining to quantum computers (QC) and quantum Bayesian (QB) nets. .

[69]
R. Tucci, "A Rudimentary Quantum Compiler," 2006, p. 49.

[70]
S. McConnel, Professional Software Development. Boston, MA: Addison-Wesley, 2004.

[71]
G. D. Baker, ""Qgol" A system for simulating quantum computations: Theory, Implementation and Insights," in Department of Computing. vol. Honours Sydney, Australia: Macquarie University, 1996, p. 62.

[72]
A. Sabry, "Modeling quantum computing in Haskell," in Proceedings of the 2003 ACM SIGPLAN workshop on Haskell Uppsala, Sweden: ACM Press, 2003.

[73]
V. Danos, E. Kashefi, and P. Panangaden, "The Measurement Calculus," Journal of the ACM, vol. 54, p. 8, 2007.

[74]
P. Selinger, "Towards a Quantum Programming Language," Mathematical Structures in Computer Science vol. 14, pp. 527-586, Aug. 2004 2004.

[75]
P. Selinger, "A Brief Survey of Quantum Programming Languages," in Proceedings of the 7th International Symposium on Functional and Logic Programming Nara, Japan, 2004.

[76]
A. Tafliovich, "Quantum Programming," in Computer Science. vol. Masters Toronto: University of Toronto, 2004, p. 83.

[77]
A. Tafliovich and E. C. R. Hehner, "Quantum Predicative Programming," ArXiv Quantum Physics e-prints, 2006.

[78]
E. C. R. Hehner, "Probabilistic Predicative Programming," in Mathematics of Program Construction Stirling Scotland, 2004.

[79]
R. S. Pressman, Software Engineering: A Practitioner's Approach, 6 ed. New York, NY: McGraw-ill, 2005.

[80]
R. E. Johnson, "Frameworks = (Components + Patterns)," Commun. ACM, vol. 40, pp. 39-42, 1997.

[81]
H. C. Cunningham, L. Yi, and T. Pallavi, "Framework design using function generalization: a binary tree traversal case study," in Proceedings of the 44th annual Southeast regional conference Melbourne, Florida: ACM, 2006.

[82]
R. E. Johnson, "Components, Frameworks, Patterns," in Proceedings of the 1997 symposium on Software reusability Boston, Massachusetts, United States: ACM, 1997.

[83]
M. Abi-Antoun, "Making frameworks work: a project retrospective," in Companion to the 22nd ACM SIGPLAN conference on Object oriented programming systems and applications companion Montreal, Quebec, Canada: ACM, 2007.

[84]
A. L. Santos, A. Lopes, and K. Koskimies, "Framework specialization aspects," in Proceedings of the 6th international conference on Aspect-oriented software development Vancouver, British Columbia, Canada: ACM, 2007.

[85]
R. A. Finkel, Advanced Programming Language Design, 1 ed. Menlo Park, CA: Addison-Wesley Publishing Company, 1996.

[86]
J. Viljamaa, "Reverse engineering framework reuse interfaces," in Proceedings of the 9th European software engineering conference held jointly with 11th ACM SIGSOFT international symposium on Foundations of software engineering Helsinki, Finland: ACM Press, 2003.

[87]
MSDN, "sealed (C# Reference),".NET 3.5 ed. vol. 2007 Redmond, WA: Microsoft, 2007.

[88]
D. Roberts and R. Johnson, "Evolving Frameworks into Domain-Specific Languages," in 3rd International Conference on Pattern Languages Allerton Park, IL, 1996.

[89]
M. Imaz and D. Benyon, Designing with Blends: Conceptual Foundations of Human-Computer Interaction and Software Engineering, 1 ed. Cambridge, MA: MIT Press, 2007.

[90]
D. Hou and H. J. Hoover, "Towards specifying constraints for object-oriented frameworks," in Proceedings of the 2001 conference of the Centre for Advanced Studies on Collaborative research Toronto, Ontario, Canada: IBM Press, 2001.

[91]
B. Eckel, Thinking in Java, 2 ed. Upper Saddle River, NJ: Prentice Hall PTR, 2000.

[92]
Mircosoft, ".NET Framework Developer Center." vol. 2007 Redmond, WA: Microsoft, 2007.

[93]
J. Bloch, "How to design a good API and why it matters," in Companion to the 21st ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications Portland, Oregon, USA: ACM Press, 2006.

[94]
MSDN, "interface (C# Reference),".NET 3.5 ed. vol. 2007 Redmond, WA: Microsoft, 2007.

[95]
T. Thai and H. Q. Lam, .NET Framework Essentials, 1 ed. Sebastopol, CA: O'Reilly & Associates, Inc., 2001.

[96]
MSDN, "Matrix Class,".NET 3.5 ed. vol. 2007 Redmond, WA: Microsoft, 2007.

[97]
S. J. Gay, "Quantum Programming Languages: Survey and Bibliography," Mathematical Structures in Computer Science, vol. 16, p. 20, March 24, 2006 2006.

PAGE
Purkeypile 3

_1257016562.unknown

_1257017893.unknown

_1258400210.unknown

_1259000533.unknown

_1260295460.unknown

_1261052161.unknown

_1261053743.unknown

_1261055076.unknown

_1261052181.unknown

_1260823907.unknown

_1260822536.unknown

_1260822563.unknown

_1260295525.unknown

_1259220004.unknown

_1259322374.unknown

_1260209233.unknown

_1259322354.unknown

_1259000621.unknown

_1258487687.unknown

_1258699636.unknown

_1259000493.unknown

_1258699660.unknown

_1258487798.unknown

_1258485515.unknown

_1258486257.unknown

_1258486459.unknown

_1258486224.unknown

_1258484811.unknown

_1258485290.unknown

_1257952438.unknown

_1258397874.unknown

_1258400191.unknown

_1258397853.unknown

_1257709344.unknown

_1257952332.unknown

_1257018119.unknown

_1257709305.unknown

_1257017921.unknown

_1257016642.unknown

_1257016675.unknown

_1257017868.unknown

_1257016659.unknown

_1257016610.unknown

_1257016630.unknown

_1257016593.unknown

_1256905592.unknown

_1256906356.unknown

_1256906455.unknown

_1256906570.unknown

_1257016435.unknown

_1256906511.unknown

_1256906379.unknown

_1256905706.unknown

_1256906326.unknown

_1256905699.unknown

_1256905702.unknown

_1256905677.unknown

_1243802154.unknown

_1256060911.unknown

_1256060913.unknown

_1256904817.unknown

_1256060912.unknown

_1256060748.unknown

_1236539304.unknown

_1240167686.unknown

_1243802077.unknown

_1236539330.unknown

_1236538577.unknown

_1236539227.unknown

_1236537874.unknown

