6:  The Normal Probability Distribution
6.1
The Exercise Reps are designed to provide practice for the student in evaluating areas under the normal curve.  The following notes may be of some assistance.

1
Table 3, Appendix I tabulates the cumulative area under a standard normal curve to the left of a specified value of z.

2
Since the total area under the curve is one, the total area lying to the right of a specified value of z and the total area to its left must add to 1.  Thus, in order to calculate a “tail area”, such as the one shown in Figure 6.1, the value of 
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will be indexed in Table 3, and the area that is obtained will be subtracted from 1.  Denote the area obtained by indexing 
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 and the desired area by A.  Then, in the above example, 
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3 To find the area under the standard normal curve between two values, z1 and z2, calculate the difference in their cumulative areas, 
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4 Note that z, similar to x, is actually a random variable which may take on an infinite number of values, both positive and negative.  Negative values of z lie to the left of the mean, 
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, and positive values lie to the right.  
Reread the instructions in the My Personal Trainer section if necessary. The answers are shown in the table.
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6.2
Similar to Exercise 6.1.  Reread the instructions in the My Personal Trainer section if necessary.  The answers are shown in the table.

	The Interval
	Write the 

probability
	Rewrite the

Probability (if needed)
	Find the 

probability

	Greater than 5
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6.3
a
It is necessary to find the area to the left of 
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The area to the left of 
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  Notice that the values in Table 3 approach 1 as the value of z increases.  When the value of z is larger than 
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(the largest value in the table), we can assume that the area to its left is approximately 1.

6.4
To find the area under the standard normal curve between two values, z1 and z2, calculate the difference in their cumulative areas, 
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6.5
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e
Since the value of 
[image: image51.wmf]4.32

z

=-

is not recorded in Table 3, you can assume that the area to the left of 
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is very close to 0.  Then 
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6.6
Similar to Exercise 6.5.


a
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b
As in part a, 
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  However, the value for 
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is not given in Table 3, but falls halfway between two tabulated values, 
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This method of evaluation is called “linear interpolation” and is performed as follows:

1 The difference between two entries in the table is called a “tabular difference”.  Interpolation is accomplished by taking appropriate portions of this difference.

2 Let P0 be the probability associated with z0 (i.e. 
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which is the proportion of the distance from z1 to z0.
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to obtain a corresponding proportion for the probabilities and add this value to P1.  This value is the desired 
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.  Thus, in this case,
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6.7
Now we are asked to find the z-value corresponding to a particular area.

a
 We need to find a z0 such that 
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  This is equivalent to finding an indexed area of 
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.  Search the interior of Table 3 until you find the four-digit number .9750.  The corresponding z-value is 1.96; that is, 
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is the desired z-value (see the figure below).
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b
We need to find a z0 such that 
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(see below).  Using Table 3, we find a value such that the indexed area is .9251.  The corresponding z-value is 
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6.8
We want to find a z-value such that 
[image: image80.wmf](

)

00

.8262

Pzzz

-<<=

(see below). 
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Since 
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, the total area in the two tails of the distribution must be 
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6.9
a
Similar to Exercise 6.7b.  The value of z0 must be positive and 
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b
It is given that the area to the left of z0 is .0505, shown as A1 in the figure below.  The desired value is not tabulated in Table 3 but falls between two tabulated values, .0505 and .0495.  Hence, using linear interpolation (as you did in Exercise 6.6b) z0 will lie halfway between –1.64 and –1.65, or 
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6.10
a
Refer to the figure below.  It is given that 
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From Exercise 6.9b, 
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Refer to the figure above and consider 
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Then 
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.  Linear interpolation must now be used to determine the value of 
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If Table 3 were correct to more than 4 decimal places, you would find that the actual value of z0 is 
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; many texts chose to round up and use the value 
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6.11
The pth percentile of the standard normal distribution is a value of z which has area p/100 to its left.  Since all four percentiles in this exercise are greater than the 50th percentile, the value of z will all lie to the right of 
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, as shown for the 90th percentile in the figure below.
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a
From the figure, the area to the left of the 90th percentile is .9000.  From Table 3, the appropriate value of z is closest to 
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with area .8997.  Hence the 90th percentile is approximately 
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b
As in part a, the area to the left of the 95th percentile is .9500.  From Table 3, the appropriate value of z is found using linear interpolation (see Exercise 6.9b) as 
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c
The area to the left of the 98th percentile is .9800.  From Table 3, the appropriate value of z is closest to 
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with area .9798.  Hence the 98th percentile is approximately 
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The area to the left of the 99th percentile is .9900.  From Table 3, the appropriate value of z is closest to 
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with area .9901.  Hence the 99th percentile is approximately 
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6.12
Since 
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measures the number of standard deviations an observation lies from its mean, it can be used to standardize any normal random variable x so that Table 3 can be used.
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This probability is the shaded area in the right tail of the normal distribution on the next page.
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Calculate 
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This probability is the shaded area in the left tail of the normal distribution above.

c
Refer to the figure below.
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Calculate 
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6.13
Similar to Exercise 6.12.
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Calculate 
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6.14
It is given that x is normally distributed with 
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Consider the probability 
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6.15
The 99th percentile of the standard normal distribution was found in Exercise 6.11d to be 
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6.16
The z-value corresponding to 
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6.17
The random variable x is normal with unknown
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.  These probabilities are shown in the figure on the next page.
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The value 
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The value 
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(ii)

Equations (i) and (ii) provide two equations in two unknowns which can be solved simultaneously for 
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and from (i), 
[image: image168.wmf]84

2.

2

s

-

==


6.18
The random variable x, the weight of a package of ground beef, has a normal distribution with 
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The z-value corresponding to 
[image: image174.wmf]1.45

x

=

is 
[image: image175.wmf]1.451

3

.15

x

z

m

s

--

===

, which would be considered an unusual observation.  Perhaps the setting on the scale was accidentally changed to 1.5 pounds!
6.19
The random variable x, the height of a male human, has a normal distribution with
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A height of 6’0” represents 
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b
Heights of 5’8” and 6’1” represent 
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inches, respectively.  Then
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c
A height of 6’0” represents 
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This would not be considered an unusually large value, since it is less than two standard deviations from the mean.


d
The probability that a man is 6’0” or taller was found in part a to be .1949, which is not an unusual occurrence.  However, if you define y to be the number of men in a random sample of size 
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who are 6’0” or taller, then y has a binomial distribution with mean 
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standard deviations from the mean, and would be considered an unusual occurrence for the general population of male humans. Perhaps our presidents do not represent a random sample from this population.

6.20
The random variable x, the diameter of a Douglas fir, has a normal distribution with
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6.21
The random variable x, cerebral blood flow, has a normal distribution with
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6.22
It is given that x is normally distributed with
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b
In order to avoid a collision, you must brake within 60 feet or less.  Hence,
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6.23
The random variable x, total weight of 8 people, has a mean of
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and a standard deviation
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 if the distribution of x is approximately normal.  Refer to the next figure.
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The z-value corresponding to 
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Similarly, the z-value corresponding to 
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and
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6.24
The random variable x, daily discharge, has mean
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6.25
It is given that x, the unsupported stem diameter of a sunflower plant, is normally distributed with 
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b
From part a, the probability that one plant has stem diameter of more than 40 mm is .0475.  Since the two plants are independent, the probability that two plants both have diameters of more than 40 mm is
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Since 95% of all measurements for a normal random variable lie within 1.96 standard deviations of the mean, the necessary interval is 
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or in the interval 29.12 to 40.88.


d
The 90th percentile of the standard normal distribution was found in Exercise 6.11a to be 
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[image: image228.wmf]x

z

m

s

-

=

, the corresponding percentile for this general normal random variable is found by solving for 
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6.26
The random variable x is normally distributed with
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6.27
a
It is given that the prime interest rate forecasts, x, are approximately normal with mean
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Calculate 
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6.28
Define x to be the percentage of returns audited for a particular state.  It is given that x is normally distributed with 
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6.29
It is given that the counts of the number of bacteria are normally distributed with
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6.30
It is given that x is normally distributed with
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Since the value 
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is a constant (although its value is unknown), it can be treated as such in Table 3.  It is necessary to find z0 such that
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From Table 3, 
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6.31
Let w be the number of words specified in the contract.  Then x, the number of words in the manuscript, is normally distributed with 
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As in Exercise 6.30, calculate
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Hence, 
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6.32
Define x to be the string tension produced by the stringing machine.  Then x is normally distributed with mean
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where C is the tension specified by the customer (see below).
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Now 
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That is, the machine should be set 3.29 psi above what the customer specifies.

6.33
The amount of money spent between 4 and 6 pm on Sundays is normally distributed with
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The z-value corresponding to 
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The z-value corresponding to 
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First, find 
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 for a single shopper.  For two shoppers, use the Multiplication Rule.
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6.34
The pulse rates are normally distributed with
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The z-values corresponding to 
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From Exercise 6.11b, we found that the 95th percentile of the standard normal (z) distribution is 
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, solve for x to find the 95th percentile for the pulse rates:
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The z-score for 
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The z-score is between 2 and 3; the probability of observing a value this large or larger is quite small. This pulse rate would be somewhat unusual.
6.35
Follow the instructions in the My Personal Trainer section. The blanks are filled in below.


Consider a binomial random variable with n =  25 and p = .6.

a
Can we use the normal approximation? 
Calculate np = 15 and nq = 10.

b
Are np and nq both greater than 5?

Yes__X__
No_____


c
If the answer to part b is yes, calculate
 = np =  15 and  
[image: image300.wmf]npq

s

=
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d
To find the probability of more than 9 successes, what values of x should be included?  x = 10, 11, …25.

e
To include the entire block of probability for the first value of x = 10, start at 9.5.


f
Calculate 
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g
Calculate 
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6.36
Follow the instructions in the My Personal Trainer section. The blanks are filled in below.


Consider a binomial random variable with n =  45 and p = .05. Fill in the blanks below to find some probabilities using the normal approximation.


a
Can we use the normal approximation? 
Calculate np = 2.25 and nq = 42.75.

b
Are np and nq both greater than 5?

Yes____
No_X____

Since np is less than 5, the normal approximation to the binomial distribution is not appropriate.
6.37
a
The normal approximation will be appropriate if both np and nq are greater than 5.  For this binomial experiment,
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and the normal approximation is appropriate.


b
For the binomial random variable, 
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The probability of interest is the area under the binomial probability histogram corresponding to the rectangles 
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To approximate this area, use the “correction for continuity” and find the area under a normal curve with mean 
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The approximating probability is 
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From Table 1, Appendix I,
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which is not too far from the approximate probability calculated in part c.

6.38
a
For this binomial experiment, 
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b
Calculate 
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.  The probability of interest is the area under the binomial probability histogram corresponding to the rectangles 
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Then
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c
To approximate 
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d
From Table 1 in Appendix I,
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which are not far from the approximating probabilities in parts b and c.

6.39
Similar to Exercise 6.38.


a
The approximating probability will be 
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b
The approximating probability is now 
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To include the entire rectangles for 
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To include the entire rectangle for 
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6.40
a
Given a binomial random variable x with 
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b
To approximate the area under the binomial distribution for x = 4, 5, 6, use a “correction for continuity” and find the area under the normal curve between 3.5 and 6.5.  This is done in order to include the entire area under the rectangles associated with the different values of x.  First find the mean and standard deviation of the binomial random variable x:  
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6.41
Using the binomial tables for 
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6.42
Refer to Exercise 6.41.  The mean and standard deviation of this binomial distribution are 
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a
The appropriate correction for continuity (see above figure) yields 
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b
Similarly, the approximation for 
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6.43
Similar to previous exercises.


a
With 
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b
To use the normal approximation, find the mean and standard deviation of this binomial random variable:
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Using the continuity correction, it is necessary to find the area to the right of 9.5.  The z-value corresponding to 
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Note that the normal approximation is very close to the exact binomial probability.

6.44
The normal approximation with “correction for continuity” is 
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6.45
a
The approximating probability will be 
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where x has a normal distribution with 
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b
The approximating probability is 
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c
If fewer than 10 individuals did not watch a movie at home this week, then more than 
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did watch a movie at home. The approximating probability is 
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6.46
Define x to be the number of children with defects.  Then 
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.  Calculate 
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Since n is large, with 
[image: image375.wmf]50

np

=

and 
[image: image376.wmf]49,950

nq

=

both greater than five, the normal approximation to the binomial can be used to find 
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Since this probability is not too small (it is greater than .05), we would not say that observing 60 or more defects is rare event.

6.47
Define x to be the number of guests claiming a reservation at the motel.  Then 
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.  The motel has only 200 rooms.  Hence, if 
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, a guest will not receive a room.  The probability of interest is then 
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.  Using the normal approximation, calculate
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The probability 
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is approximated by the area under the appropriate normal curve to the left of 200.5.  The z-value corresponding to 
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6.48
Define x to be the number of workers with identifiable lung cancer.  If the rate of lung cancer in the population of workers in the air-polluted environment is the same as the population in general, then 
[image: image390.wmf]140.025
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 and the random variable x has a binomial distribution with 
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.  Calculate





[image: image393.wmf]400(.025)10and400(.025)(.975)9.753.122

np

ms

======


If we want to show that the rate of lung cancer in the polluted environment is greater than the general population rate, we need to show that the number of cancer victims in the sample from the polluted environment is unusually high.  Hence, we calculate the z-score associated with 
[image: image394.wmf]19
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as
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which is quite large.  This would imply that the value 
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is unusually large, and would indicate that in fact p is greater than 1/40 for the workers in the polluted environment.

6.49
Define x to be the number of elections in which the taller candidate won.  If Americans are not biased by height, then the random variable x has a binomial distribution with 
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a
Using the normal approximation with correction for continuity, we find the area to the right of 
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b
Since the occurrence of 17 out of 31 taller choices is not unusual, based on the results of part a, it appears that Americans do not consider height when casting a vote for a candidate.

6.50
Define x to be the number of people with Rh negative blood.  Then the random variable x has a binomial distribution with 
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[image: image403.wmf].15

p

=

.  Calculate 
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a
Using the normal approximation with correction for continuity, we find the area to the left of 
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b
Similar to part a, finding the area between 
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and 
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c
The probability that more than 80 donors are Rh positive is the same as the probability that less than 12 donors are Rh negative, approximated with the area to the left of 
[image: image410.wmf]11.5
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6.51
Define x to be the number of consumers who preferred a Pepsi product.  Then the random variable x has a binomial distribution with 
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and 
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, if Pepsi’s market share is indeed 26%.  Calculate 
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a
Using the normal approximation with correction for continuity, we find the area between 
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b
Find the area between 
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[image: image419.wmf]150.5

x

=

:



[image: image420.wmf](

)

(

)

119.5130150.5130

119.5150.51.072.09.9817.1423.8394

9.8089.808

PxPzPz

--

æö

<<=<<=-<<=-=

ç÷

èø



c
Find the area to the left of 
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d
The value 
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standard deviations above the mean, if Pepsi’s market share is indeed 26%.  This is such an unusual occurrence that we would conclude that Pepsi’s market share is higher than claimed.

6.52
Define x to be the number of Americans who feel pressure to work too much.  Then the random variable x has a binomial distribution with 
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and 
[image: image426.wmf].6

p

=

.  Calculate 
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a
From Table 1 in Appendix I, the exact probability that x is more than 20 is
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b
Using the normal approximation with correction for continuity, we find the area to the right of  
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c
If x is the number who wished for more family time, then x has a binomial distribution with 
[image: image431.wmf]25
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 and 
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p

=

.  From Table 1 in Appendix I, the exact probability that x is between 15 and 20 (inclusive) is
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b
Calculate 
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.Using the normal approximation with correction for continuity, we find the area between 
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6.53
Refer to Exercise 6.52, and let x be the number of working women who put in more than 40 hours per week on the job.  Then x has a binomial distribution with 
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 and 
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a
The average value of x is 
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b
The standard deviation of x is 
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c
The z-score for 
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 which is within two standard deviations of the mean. This is not considered an unusual occurrence.

6.54
a
The area to the left of 
[image: image444.wmf]1.2

z

=

is 
[image: image445.wmf](

)

1.2.8849

A

=

.


b
The area to the left of 
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6.55
a
The desired are A1, as shown in the figure below, is found by subtracting the cumulative areas corresponding to 
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, respectively.
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b
The desired area is shown below:
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6.56
a
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6.57
The procedure is reversed now, because the area under the curve is known.  The objective is to determine the particular value, z0, which will yield the given probability.  In this exercise, it is necessary to find a z0 such that 
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, and from Table 3, the desired value of z0 is 0.
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6.59
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 represent the 25th and 75th percentiles of the standard normal distribution.
6.60
It is given that x is approximately normally distributed with 
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Calculate 
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c
If the bit is replaced after more than 90 hours, then x > 90.  Calculate 
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6.61
The range of faculty ages should be approximately from 25 to 65 (25 for a new PhD).  However, the distribution will not be normal (with average value 45 and symmetric) since there will be an overabundance of older tenured faculty.  The distribution will probably be skewed to the right.

6.62
For this exercise, it is given that the population of bolt diameters is normally distributed with
[image: image478.wmf].498

m

=

and 
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.  Thus, no correction for continuity is necessary.  The fraction of acceptable bolts will be those which lie in the interval from .496 to .504.  All others are unacceptable.  The desired fraction of acceptable bolts is calculated, and the fraction of unacceptable bolts (shaded in the figure below) is obtained by subtracting from the total probability, which is 1.
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The fraction of acceptable bolts is then
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and the fraction of unacceptable bolts is 
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6.63
It is given that x is normally distributed with 
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and 
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.  Let t be the guarantee time for the car.  It is necessary that only 5% of the cars fail before time t (see below).  That is, 
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From Table 3, we know that the value of z that satisfies the above probability statement is 
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6.64
The random variable x is approximately normally distributed with 
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The z-value corresponding to 
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The z-value corresponding to 
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6.65
It is given that 
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6.66
It is given that x is normally distributed with 
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6.67
For this exercise 
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.  The object is to determine a particular value, x0, for the random variable x so that 
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(that is, 90% of the students will finish the examination before the set time limit).  Refer to the figure below.
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Consider 
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6.68
It is given that 
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.  If we assume that x, the service time for one vehicle, is normally distributed, the probability of interest is 
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6.69
For the binomial random variable x, the mean and standard deviation are calculated under the assumption that the advertiser’s claim is correct and
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If the advertiser’s claim is correct, the z-score for the observed value of x, 
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That is, the observed value lies 1.26 standard deviations below the mean.  This is not an unlikely occurrence.  Hence, we would have no reason to doubt the advertiser’s claim.

6.70
a
No.  The errors in forecasting would tend to be skewed, with more underestimates than overestimates.


b
Let x be the number of estimates that are in error by more than 15%.  Then x has a binomial distribution with 
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6.71
It is given that the random variable x (ounces of fill) is normally distributed with mean
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and standard deviation
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From Table 3, the value of z corresponding to an area (in the upper tail of the distribution) of .01 is 
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6.72
The 3000 light bulbs utilized by the manufacturing plant comprise the entire population (that is, this is not a sample from the population) whose length of life is normally distributed with mean 
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and standard deviation 
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.  The objective is to find a particular value, x0, so that 
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That is, only 1% of the bulbs will burn out before they are replaced at time x0.  Then
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From Table 3, the value of z corresponding to an area (in the left tail of the distribution) of .01 is 
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6.73
The random variable x is the size of the freshman class.  That is, the admissions office will send letters of acceptance to (or accept deposits from) a certain number of qualified students.  Of these students, a certain number will actually enter the freshman class.  Since the experiment results in one of two outcomes (enter or not enter), the random variable x, the number of students entering the freshman class, has a binomial distribution with 



n = number of deposits accepted and


p = P[student, having been accepted, enters freshman class] = .8


a
It is necessary to find a value for n such 
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Using the normal approximation, we need to find a value of n such that 
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From Table 3, the z-value corresponding to an area of .05 in the right tail of the normal distribution is 1.645.  Then,
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Solving for n in the above equation, we obtain the following quadratic equation:
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Let 
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.  Then the equation takes the form 
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which can be solved using the quadratic formula,
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Since x must be positive, the desired root is
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Thus, 141 deposits should be accepted.


b
Once 
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has been determined, the mean and standard deviation of the distribution are
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Then the approximation for 
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6.74
The random variable of interest is x, the number of persons not showing up for a given flight.  This is a binomial random variable with 
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.  If there is to be a seat available for every person planning to fly, then there must be at least five persons not showing up.  Hence, the probability of interest is 
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Referring to the figure on the next page, a correction for continuity is made to include the entire area under the rectangle associated with the value 
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so that 
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6.75
Define
x = number of incoming calls that are long distance




p = P[incoming call is long distance] = .3




n = 200


The desired probability is 
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A correction for continuity is made to include the entire area under the rectangle corresponding to 
[image: image570.wmf]50

x

=

 and hence the approximation will be 
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6.76
a
Let x be the number of plants with red petals.  Then x has a binomial distribution with 
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b
Since 
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are both greater than 5, the normal approximation is appropriate.


c
 Calculate
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A correction for continuity is made to include the entire area under the rectangles corresponding to 
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d
The probability that 53 or fewer plants have red flower is approximated as
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This would be considered and unusual event.


e
If the value 
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is correct, the only explanation for the unusual occurrence in part d is that the 
[image: image582.wmf]100

n

=

seeds do not represent a random sample from the population of peony plants.  Perhaps the sample became contaminated in some way, some other uncontrolled variable is affecting the flower color.

6.77
The following information is available:




x = number of relays from supplier A




p = P[relay comes from supplier A] = 2/3




n = 75

Calculate
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using the normal approximation to the binomial distribution.  The z-value corresponding to 
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6.78
For the binomial random variable x, the mean and standard deviation are calculated under the assumption that there is no difference between the effect of TV and reading on calorie intake, and hence that
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If there is no difference between TV and reading, the z-score for the observed value of x, 
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That is, the observed value lies 1.461 standard deviations above the mean.  This is not an unlikely occurrence.  Hence, we would have no reason to believe that there is a difference between calorie intake for TV watchers versus readers.

6.79
The random variable x, the gestation time for a human baby is normally distributed with
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From Exercise 6.59, the values (rounded to two decimal places) 
[image: image595.wmf].67

z

=-

and 
[image: image596.wmf].67

z

=

represent the 25th and 75th percentiles of the standard normal distribution.  Converting these values to their equivalents for the general random variable x using the relationship 
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The lower quartile:  
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The upper quartile:  
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b
If you consider a month to be approximately 30 days, the value 
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is unusual, since it lies
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standard deviations below the mean gestation time.

6.80
The random variable y, the percentage of tax returns audited, has a normal distribution with
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b
Define x to be the number of states in which more than 2% of its returns were audited.  Then x has a binomial distribution with 
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The expected value of x is 
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The value 
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has z-score 
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It is unlikely that as many as 15 states will have more than 2% of its returns audited.

6.81
Define x to be the number of men who have fished in the last year.  Then x has a binomial distribution with 
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a
Using the normal approximation with correction for continuity,
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b
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c
The sample is not random, since mailing lists for a sporting goods company will probably contain more fishermen than the population in general.  Since the sampling was not random, the survey results are not reliable.

6.82
The scores are approximately normal with mean 
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 and standard deviation 
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From Table 3, the z-value corresponding to an area of .15 in the right tail of the normal distribution is a value that has area .8500 to its left. The closest value given in the table is 
[image: image619.wmf]1.04

z

=

.  Then,





[image: image620.wmf]75

1.04751.04(12)87.48

12

c

c

-

=Þ=+=



The proper score to designate “extroverts” would be any score higher than 87.48.
6.83
In order to implement the traditional interpretation of “curving the grades”, the proportions shown in the table need to be applied to the normal curve, as shown in the figure below.
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a
The C grades constitute the middle 40%, that is, 20% on either side of the mean.  The lower boundary has area .3000 to its left. From Table 3, we need to find a value of z such that A(z) = .3000.  The closest value in the table is .3015 with 
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. The upper boundary is then 
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.


b
The cutoff for the lowest D and highest B grades constitute the lower and upper boundaries of the middle 80%, that is, 40% on either side of the mean.  The lower boundary has area .1000 to its left, so we need to find a value of z such that A(z) = .1000. The closest value in the table is .1003 with 
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.  The upper boundary is then 
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6.84
If the grades of a large class have a mean or 78 and a standard deviation of 11, the appropriate cutoffs are 
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 standard deviations and 
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The cutoff points are shown in the table below.

	Letter grade
	A
	B
	C
	D
	F

	Score
	94.5 and above
	83.5 to 94.5
	72.5 to 83.5
	61.5 to 72.5
	below 61.5 


6.85
Assume that the temperatures of healthy humans is approximately normal with 
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b
From Exercise 6.11b, we found that the 95th percentile of the standard normal (z) distribution is 
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, solve for x to find the 95th percentile for the temperatures:
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degrees.

6.86
The student should use either the Normal Distribution Probabilities or the Normal Probabilities and 
z-scores applets.  Using the former, the student will need to enter a large values of z, say 
[image: image635.wmf]10

z
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as the lower boundary and the particular value of z as  the upper boundary in order to obtain the cumulative area.  When using the Normal Probabilities and z-scores applet, enter 0 as the mean and 1 as the standard deviation. Choose the appropriate configuration from the dropdown list.  The probability calculations from Table 3 are given below.
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6.87
Use either the Normal Distribution Probabilities or the Normal Probabilities and z-scores applets.


a
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6.88
Use either the Normal Distribution Probabilities or the Normal Probabilities and z-scores applets.


a
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6.89
Use the Normal Probabilities and z-scores applet.  Enter 0 as the mean and 1 as the standard deviation.  Choose Area to the Right from the dropdown list and enter the desired probability in the box marked “prob”.  The necessary value of z0 will appear in the box marked “z”.

a-b
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6.90
Use the Normal Probabilities and z-scores applet.  Enter 0 as the mean and 1 as the standard deviation.  Choose Middle from the dropdown list and enter the desired probability in the box marked “prob”.  The necessary value of z0 will appear in the box marked “z”.


a
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6.91
a
Use the Normal Distribution Probabilities applet.  Enter 5 as the mean and 2 as the standard deviation, and the appropriate lower and upper boundaries for the probabilities you need to calculate.  The probability is read from the applet as Prob = 0.9651.


b
Use the Normal Probabilities and z-scores applet.  Enter 5 as the mean and 2 as the standard deviation and 
[image: image648.wmf]7.5
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.  Choose Area to the Right from the dropdown list and read the probability as Prob = 0.1056.


c
Use the Normal Probabilities and z-scores applet.  Enter 5 as the mean and 2 as the standard deviation and 
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.  Choose Area to the Left from the dropdown list and read the probability as Prob = 0.0062.

6.92
Use the Normal Approximation to Binomial Probabilities applet.   The applet calculates cumulative probabilities.  Enter 
[image: image650.wmf]36
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in the boxes on the upper left side of the applet.


a
Enter 25 in the box marked “k:”.  The normal approximation is calculated on the right side of the applet as Prob = 0.9786.

b
Enter 20 in the box marked “k:”. The normal approximation to 
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Prob = 0.6385.  Then enter 14 in the box marked “k:”. The normal approximation to
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is calculated as Prob = .0493.  Subtracting these two approximate probabilities gives 
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.  Enter 30 in the box marked “k:”.  The normal approximation 
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is calculated as Prob = 0.9999 and 
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6.93
a-b
 Using the Calculating Binomial Probabilities applet with 
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. The two answers are quite close to each other.
6.94
It is given that x, the percent of retail price at which the collection sells, is normally distributed with
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a
If the collection is worth $30,000 and is selling for more than $15,000, then x is more than 50 (percent).  Calculate 
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Then 
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(The applet uses three decimal place accuracy and shows z = 1.111 with Prob = 0.1333.)

b
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from part a.  (The applet uses three decimal place accuracy and shows z = 1.111 with Prob = 0.1333.)

c
The value $12,000 is 40 percent of the collection’s worth.  Calculate 
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Then
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.  (The applet uses three decimal place accuracy and shows z = -1.111 with Prob = 0.1333.)
6.95
a
It is given that the scores on a national achievement test were approximately normally distributed with a mean of 540 and standard deviation of 110.  It is necessary to determine how far, in standard deviations, a score of 680 departs from the mean of 540.  Calculate
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b
To find the percentage of people who scored higher than 680, we find the area under the standardized normal curve greater than 1.27.  Using Table 3, this area is equal to
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Thus, approximately 10.2% of the people who took the test scored higher than 680.  (The applet uses three decimal place accuracy and shows z = 1.273 with Prob = 0.1016.)
6.96
Define x to be the salaries of assistant professors at public 4-year colleges during the 2005 academic year.  It is given that x is normally distributed with
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(The applet uses three decimal place accuracy and shows z = (1.395 with Prob = 0.0815.)

b
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(The applet uses three decimal place accuracy and shows Prob = 0.7839.)
6.97
It is given that the probability of a successful single transplant from the early gastrula stage is .65.  In a sample of 100 transplants, the mean and standard deviation of the binomial distribution are
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It is necessary to find the probability that more than 70 transplants will be successful.  This is approximated by the area under a normal curve with 
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to the right of 70.5.  The z-value corresponding to 
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(The applet uses more decimal place accuracy and shows Prob = 0.8756, so that 
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Case Study:  The Long and the Short of It

1 If x, the height of an adult Chinese male is normally distributed, with
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2 No.  Seligman’s odds of 40 to 1 (1 in 41 or .0244) are greater than the odds calculated in part 1.

3 Seligman’s assumption that the heights of Chinese males are approximately normal is correct, as you will learn in Chapter 7.  Also, the claim that the mean height is 66 or taller is plausible, since the historical trend is towards an increase in height.  In fact, if the mean is greater than 66, the probability calculated in part 1 would be even smaller.  The assumption that 
[image: image687.wmf]2.7

s

=

 “because it looks about right for that mean” is highly suspect, and greatly affects the calculations in part 1.


Another flaw in the assumptions is that the distribution of the heights of all Chinese males may not be a good model for the distribution of heights of potential candidates for Deng Xiaoping’s replacement. Since candidates would likely be a very select group of older Chinese males, and since human heights decrease as they age, the mean height of this group is likely less than the population of adult Chinese males in general.  This would increase the probability calculated in part 1.
4 The answer will depend on whether you are willing to accept Seligman’s assumptions or not.  See part 3 and draw your own conclusions.
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