Lesson 1: Matrix Review

Introduction

Why Matrix Algebra?

Univariate Statistics: 

Are concerned with random scalar variables, Y. 

Example: Y may denote the daily vitamin C intake of a randomly selected woman in the USDA women’s nutrition survey. 

Multivariate Statistics: 

Are concerned with random vectors, Y. 

Example: For a randomly selected woman in the USDA women’s nutrition survey, we may have: 


Note: Each of the elements of Y is a random variable.



Operations carried out on scalars in univariate statistics are also carried out by analogous operations on vectors and matrices in multivariate statistics.

Example: Consider the sample mean of a random variable Y:
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For multivariate statistics, we may compute the mean of a random vector Y where:
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Here, the elements of the sample mean vector are equal to the sample means of the individual variables. The sample mean vector may be computed by separate calculations of the sample means of the component variables. Or, equivalently, we may add all of the data vectors together then divide each element of the resulting vector by the sample size n.

Learning objectives & outcomes

The objective of this lesson is to review basic matrix operations necessary to understand multivariate statistics. These operations include:

· Transpose

· Addition

· Multiplication

· Identity Matrix

· Matrix Inverse



Matrix Operations

In the following, we will consider n x m matrices of the form:
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A vector is an n x 1 matrix, for instance: 
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Matrix Transpose: 
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Example:

Symmetric Matrices

Note that a matrix A is symmetric if A' = A; that is, if aij = aij. Important examples of symmetric matrices in multivariate statistics include the variance-covariance matrix and the correlation matrix. These shall be defined when we consider descriptive statistics.

Examples: 

	This matrix below
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is symmetric.
	This matrix below
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is not symmetric. 


Addition

The sum of two matrices: 
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Here the notation "n×m" means that each of the matrices A, B, and C has n rows and m columns. Two matrices may be added if and only if they have identical numbers of rows and they have identical numbers of columns. Matrices are added by summing the corresponding columns of each matrix. Thus the ijth column of C is obtained by summing the ijth elements of A and B. 

Example:
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Multiplication

The product of two matrices: 
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Here the number of columns in A must equal the number of rows in B. Note: In general, AB ≠ BA. 

Example: 
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The Identity Matrix

The identity matrix has ones in the diagonal and zeros in the off-diagonal elements:
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It is called the identity matrix since multiplication of any matrix A by the identity matrix yields the original matrix A:

AI = IA = A 
Matrix Inverse 

Square matrices only: A-1 is the inverse of A if

AA-1 = I 

For 2 x 2 Matrices, we have the formula:
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Example: 
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Always check your work!
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General n x n Matrices:

To obtain an algorithm for inverting general n x n matrices, we must review three elementary row operations: 

1. Exchange two rows. 

2. Multiply the elements of a row by a constant. 

3. Add a multiple of another row to the given row. 

Obtaining the Inverse of Matrix A

To obtain the inverse of a n x n matrix A : 

Step 1: Create the partitioned matrix ( A I ) , where I is the identity matrix. 

Step 2: Perform elementary row operations on the partitioned matrix with the objective of converting the first part of the matrix to the identity matrix. 

Step 3: Then the resulting partitioned matrix will take the form ( I A-1 ) 

Step 4: Check your work by demonstrating that AA-1 = I. 

Below is a demonstration of this process:

Summary

In this lesson we learned how to carry out basic matrix operations: 

· Transpose

· Addition

· Multiplication

· Inverse

In addition, you should know the definitions of:

· Symmetric Matrix

· Identity Matrix

Lesson 2: Graphical Display of Multivariate Data

Introduction

One of the first steps in the analysis of any dataset is an Exploratory Data Analysis (EDA), including the graphical display of the data. 

Why do we look at graphical displays of the data? Your reasons might include to: 

· suggest a plausible model for the data,

· assess validity of model assumptions,

· detect outliers, or

· suggest plausible normalizing transformations

Many multivariate methods assume that the data are multivariate normally distributed. Exploratory data analysis through the graphical display of data can be used to assess the normality of the data. If evidence is found that the data are not normally distributed, then graphical methods can be applied to determine appropriate normalizing transformations for the data.

Learning objectives & outcomes

The objectives of this lesson are:

· Introduce graphical methods for summarizing multivariate data including histograms, matrices of scatterplots, and rotating 3-dimensional scatterplots;

· Produce graphics using SAS interactive data analysis; 

· Understand when transformations of the data should be applied, and what specific transformations should be considered; 

· Learn how to identify unusual observations (outliers), and understand issues regarding how outliers should be handled if they are detected. 

Graphical Methods

Example: USDA Women’s Health Survey 

Let's take a look at an example. In 1985, the USDA commissioned a study of women’s nutrition. Nutrient intake was measured for a random sample of 737 women aged 25-50 years. The following variables were measured:

· Calcium(mg)

· Iron(mg)

· Protein(g) 

· Vitamin A(μg) 

· Vitamin C(mg)

Here are the different ways we could take a look at this data graphically using SAS's Interactive Data Analysis tools.

Univariate Cases: 

Using Histograms we can: 

· Assess Normality

· Find Normalizing Transformations

· Detect Outliers

Here we have a histogram for daily intake of calcium. Note that the data appear to be skewed to the left, suggesting that calcium is not normally distributed. This suggests that a normalizing transformation should be considered.
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Common transformations include:

· Square Root (often used with counts data)

· Quarter Root

· Log (either natural or base 10) 

The square root transformation is the weakest of the above transformations, while the log transformation is the strongest. In practice, it is generally a good idea to try all three transformations to see which appears to yield the most symmetric distribution. 

The following shows histograms for the raw data (calcium), square-root transformation (S_calciu), quarter-root transformation (S_S_calc), and log transformation (L_calciu). With increasingly stronger transformations of the data, the distribution shifts from being skewed to the left to being skewed to the right. Here, the square-root transformed data is still slightly skewed to the left, suggesting the that the square-root transformation is not strong enough. In contrast, the log-transformed data are skewed to the right, suggesting that the log transformation is too strong. The quarter-root transformation results in the most symmetry distribution, suggesting that this transformation is most appropriate.
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In practice, histograms should be plotted for each of the variables, and transformations should be applied as needed.

Bivariate Cases: 

Using Scatter Plots we can: 

· Describe relationships between pairs of variables

· Assess linearity

· Find Linearizing Transformations

· Detect Outliers

Here we have a scatterplot in which calcium is plotted against iron. This plot suggests that daily intake of calcium tends to increase with increasing daily intake of iron. If the data are bivariate normally distributed, then the scatterplot should be approximately elliptical in shape. However, the points appear to fan out from the origin, suggesting that the data are not bivariate normal. 
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After applying quarter-root transformations to both calcium and iron, we obtain a scatter of point that appears to be more elliptical in shape. Moreover, it appears that the relationship between the transformed variables is approximately linear. The point in the lower left-hand corner appears to be an outlier, or unusual observation. Upon closer examination, this woman reports zero daily intake of iron. Since this is very unlikely to be correct, we might justifiably remove this observation from the data set.
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Outliers:
Note that it is not appropriate to remove an observation from the data just because it is an outlier. Consider, for example, the ozone hole in the Antarctic. For years, NASA had been flying polar-orbiting satellites designed to measure ozone in the upper atmosphere without detecting an ozone hole. Then, one day, a scientist visiting the Antarctic pointed an instrument straight-up into the sky, and found evidence of an ozone hole. What happened? It turned out that the software used to process the NASA satellite data had a routine for automatically removing outliers. In this case, all observations with unusually low ozone levels were automatically removed by this routine. A close review of the raw, preprocessed data confirmed that there was an ozone hole. 

The above is a case, where the outliers themselves are the most interesting observations. In general, outliers should be removed only if there is reason to believe that there is something wrong with the individual observations; for example, if the observation is deemed to be impossible, as in the case of zero daily intake of iron. This points out the need for have good field or lab notes, detailing the data collection process. Lab notes may indicate that something may have gone wrong with an individual observation; for example, a sample may have been dropped on the floor leading to contamination. If such a sample resulted in an outlier, then that sample may legitimately be removed from the data. 

Outliers often have greater influence on the results of data analyses than the remaining observations. For example, outliers have a strong influence on the calculation of the sample mean. If outliers are detected, and there is no collaborating evidence to suggest that they should be removed, then resistant statistical techniques should be applied. For example, the sample median is not sensitive to outliers, and so may be calculated in place of the sample mean. Outlier resistant methods go well beyond the scope of this course. If outliers are detected, then you should consult with a statistician. 

Trivariate Cases: 

Using Rotating Scatter Plots we can:

· Describe relationships among three variables

· Detect Outliers
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By rotating a 3-dimensional scatterplot, (using the navigational buttons in the upper left hand corner), the illusion of three dimensions can be achieved. Here, we are looking to see if the cloud of points is approximately elliptical in shape. Play the Quicktime movie below to get a sense of how SAS's Interactive Data Analysis tools provide this type of inspection.


Multivariate Cases: 

Using Matrix of Scatter Plots we can:

· Look at all of the relationships between pairs in one group of plots

· Describe relationships among three or more variables 

Here, we have a matrix of scatterplots for quarter-root transformed data on all variables. Note that each variable appears to be positively related to the remaining variables. However, the strength of that relationship depends on which pair of variables is considered. For example, quarter-root iron is strongly related to quarter-root protein, but the relationship between calcium and vitamin C is not very strong.
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Summary

In this lesson we learned about: 

· How to use the data step in SAS to input data;

· How to use the interactive data analysis in SAS to produce histograms, scatterplots, matrices of scatterplots, and rotating scatterplots; 

· How to interpret graphical displays of multivariate data; 

· How to determine the most appropriate normalizing transformation of the data; 

· How to detect outliers; 

· Issues regarding when outliers should be removed from the data, or when they should be retained. 

Lesson 3: Descriptive Statistics

Introduction

Goal: To provide a partial description of the joint distribution of the data. Three aspects of the data are of concern here, the first two of which you should already be familiar with from univariate statistics. These are:

1. Central Tendency. Where are the data located? What is a typical value for each variable?

2. Dispersion. How variable or disperse are the data? How far apart are the observations for a given variable?

3. Association. This might be a new measure for you! How does each variable relate to the remaining variables? Or, how are the variables related to one another? Are they positively or negatively related?

We must distinguish between:

· Population parameters which describe characteristics of the population. The population is the collection of all people, plants, animals, or objects of interest, about which we may wish to make statistical inferences. The population may also be viewed as the collection of all possible random draws from a stochastic model; for example, independent draws from a normal distribution with a given population mean and population variance.

· Descriptive statistics which describe characteristics of a sample from the population. Here, the sample is comprised of the available data. 

In general, the descriptive statistics are used as estimates of corresponding parameters. For example, a sample mean is an estimate of the population mean.

In a population, we might see the following:

· For a measure of Central Tendency you would have the Population Mean
· For a measure of Dispersion we will calculate the Population Variance
(these should both be familair quantities...)

· For multivariate statistics we will add the Population Covariance or Correlation as a measure of Association between pairs of variables.

Here is the Notation that will be used: 

Xij = Observation for variable j in subject i . 

p = Number of variables

n = Number of subjects 

As an example let's use the women'd nutrition data. 

p = 5 nutritional outcomes

n = 737 subjects

In multivariate statistics we will always be working with vectors of observations. So in this case we are going to collect the date for the p variables on each subject into a vector. In the expression below, Xi is the vector of observations for the ith subject. Therefore, the data for the jth variable will be located in the jth element of this subject's vector.
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Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Interpret measures of central tendancy, dispersion, and association; 

· Calculate sample means, variances, covariances, and correlations using a hand calculator; 

· Use SAS to compute sample means, variances, covariances, and correlations. 



Measurement of Central Tendency 

Central Tendency 

The first thing to do is to consider central tendency. This measure deals with where the data tend to be located. It addresses the question of what is a typical value for each variable. 

The population mean is the measure of central tendency for the population. Here, the population mean for variable j is 

μj =E(Xij)

The notation E stands for statistical expectation; here E(Xij) is the mean of Xij over all members of the population, or equivalently, over all random draws from a stochastic model. For example, μj =E(Xij) may be the mean of a normal distribution.

The population mean μj for variable j can be estimated by the sample mean
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This is an ordinary sample mean, calculated the same way as you would in univariate statistics while only considering the data on variable j. Therefore we take all the values for variable j, add them up across all the subjects, and then divide by the sample size n.

Note: the sample mean [image: image28.png]


, because it is a function of our random data is also going to have a mean itself. In fact, the population mean of the sample mean is equal to population mean μj; i.e., 
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Therefore, the [image: image30.png]


is unbiased for μj.
Another way of saying this is that the mean of the [image: image31.png]


’s over all possible samples of size n is equal to μj. 

Recall that the population mean vector is μ which is a collection of the means for each of the population means for each of the different variables.
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We can estimate this population mean vector, μ, by [image: image33.png]


. This is obtained by collecting the sample means from each of the variables in a single vector. This is shown below.

[image: image34.png]11X
Epe

FEL X

S,
:%;




A first method, (located in the first bracket set), basically shows the means appearing for each of the elements in the vector. The second bracket shows the formulas given for each of the means of these variables. And finally we have the formula for the sample mean vector in matrix notation which is obtained by taking all the data vectors, adding them up and dividing each of these resulting elements by n.

Just as the sample means, [image: image35.png]


, for the individual variables are unbiased for their respective population means, note that the sample mean vectors is unbiased for the population mean vectors. 
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Measurement of Dispersion

Next consider the dispersion of a given variable. This measure is concerned with how variable the data are, or how far apart the observations are from one another. 

The population variance is the measure of dispersion for the population. Here, the population variance for variable j is 
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Note that the squared residual (Xij - μj)2 is a function of the random variable Xij. Therefore, the squared residual itself is random, and has a population mean. The population variance is thus the population mean of the squared residual. We see that if the data tend to be far away from the mean, the squared residual will tend to be large, and hence the population variance will also be large. Conversely, if the the data tend to be close to the mean, the squared residual will tend to be small, and hence the population variance will also be small.

The population variance [image: image38.png]


can be estimated by the sample variance 
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The first expression in this formula is most suitable for interpreting the sample variance. We see that it is a function of the squared residuals; that is, take difference between the individual observations and their sample mean, and then square the result. Here, we may observe that if tend to be far away from their sample means, then the squared residuals and hence the sample variance will also tend to be large.

If on the other hand, if the observations tend to be close to their respective sample means, then the squared differences between the data and their means will be small, resulting is a small sample variance value for that variable. 

The last part of the expression above, gives the formula that is most suitable for computation, either by hand or by a computer! In the formula, each of the observations are squared then the results are added together to obtained the first term in the numerator. The second term in the numerator is obtained by summing the individual observations, squaring the result, and dividing by the sample size n. The difference between the first and second terms is then obtained, and the result is divided by the sample size n minus 1.

Since the sample variance is a function of the random data, the sample variance itself is a random quantity, and so has a population mean. In fact, the population mean of the sample variance is equal to the population variance:
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That is, the sample variance[image: image41.png]


 is unbiased for the population variance [image: image42.png]
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Measurements of Association

Association is concerned with how each variable is related to each other variable. In this case the first measure that we will consider is the covariance between two variables j and k.

The population covariance is a measure of the association between pairs of variables in a population. Here, the population covariance between variables j and k is 
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Note that the product of the residuals (Xij - μj) and (Xik - μk) for variables j and k, respectively, is a function of the random variables Xij and Xik. Therefore, (Xij - μj)(Xik - μk) is itself random, and has a population mean. The population covariance is defined to be the population mean of this product of residuals. We see that if either both variables are greater than their respective means, or if they are both less than their respective means, then the product of the residuals will be positive. Thus, if the value of variable j tends to be greater than its mean when the value of variable k is larger than its mean, and if the value of variable j tends to be less than its mean when the value of variable k is smaller than its mean, then the covariance will be positive. Positive population covariances mean that the two variables are positively associated; variable j tends to increase with increasing values of variable k. 

Negative association can also occur. If one variable tends to be greater than its mean when the other variable is less than its mean, the product of the residuals will be negative, and you will obtain a negative population covariance. Variable j will tend to decrease with increasing values of variable k.

The population covariance σjk between variables j and k can be estimated by the sample covariance. This can be calculated using the formula below:
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Just like in the formula for variance we have two expressions that make up this formula. The first half of the formula is most suitable for understanding the interpretation of the sample covariance, and the second half of the formula is what is used for calculation.

Looking at the first half of the expression what you see inside the sum is the product of the residual differences between variable j and its mean times the residual differences between variable k and its mean. We can see that if either both variables tend to be greater than their respective means or less than their respective means, then the product of the residuals will tend to be positive leading to a positive sample covariance. 

Conversely if one variable takes values that are greater than its mean when the opposite variable takes a value less than its mean, then the product will take a negative value. In the end, when you add up this product over all of the observations, you will end up with a negative covariance.

So, in effect, a positive covariance would indicate a positive association between the variables j and k. And a negative association is when the covariance is negative.

For computational purposes we will use the second half of the formula. For each subject, the product of the two variables is obtained, and then the products are summed to obtain the first term in the numerator. The second term in the numerator is obtained by taking the product of the sums of variable over the n subjects, then dividing the results by the sample size n. The difference between the first and second terms is then divided by n -1 to obtain the covariance value. 

Again, sample covariance is a function of the random data, and hence, is random itself. As before, the population mean of the sample covariance sjk is equal the population covarianceσjk; i.e., 
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That is, the sample covariance sjk is unbiased for the population covariance σjk.

The sample covariance is a measure of the association between a pair of variables:

sjk = 0 implies that the two variables are uncorrelated. (Note that this does not necessarily imply independence, we'll get back to this later.)

sjk > 0 implies that the two variables are positively correlated; i.e., values of variable j tend to increase with increasing values of variable k. The larger the covariance, the stronger the positive association between the two variables.

sjk < 0 implies that the two variables are negatively correlated; i.e., values of variable j tend to decrease with increasing values of variable k. The smaller the covariance, the stronger the negative association between the two variables.

Recall, that we had collected all of the population means of the p variables into a mean vector. Likewise, the population variances and covariances can be collected into the population variance-covariance matrix: 
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Note that the population variances appear along the diagonal of this matrix, and the covariance appear in the off-diagonal elements. So, the covariance between variables j and k will appear in row j and column k of this matrix.

The population variance-covariance matrix may be estimated by the sample variance-covariance matrix. The population variances and covariances in the above population variance-covariance matrix are replaced by the corresponding sample variances and covariances to obtain the sample variance-covariance matrix:
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Note that the sample variances appear along diagonal of this matrix and the covariances appear in the off-diagonal elements. So the covariance between variables j and k will appear in the jkth element of this matrix.

Notes: 

S (the sample variance-covariance matrix) is symmetric; i.e., sjk = skj.

S is unbiased for the population variance covariance matrix Σ ; i.e., 
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Since this matrix is a function of our random data, this means that the elements of this matrix are also going to be random, and the matrix on the whole is random as well. When I say that this quantity is unbiased, what this means is that the mean of each element of that matrix is equal to the corresponding elements of the population.

In matrix notation sample variance-covariance matrix matrix may be computed used the following expressions:
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Just as we have seen in the previous formulas, the first half of the formula is used in interpretation, and the second half of the formula is what is used for calculation purposes.

Looking at the second term you can see that the first term in the numerator involves taking the data vector for each subject and multiplying by its transpose. The resulting matrices are then added over the n subjects. To obtain the second term in numerator, first compute the sum of the data vector vectors over the n subjects, then take the resulting vector and multiply by its transpose then divide the resulting matrix by the number of subjects n. Take the difference between the two terms in the numerator and divide by n - 1.

Problem: There is a problem with trying to interpret the covariance. And this is that, although the magnitude of the covariance sjk measures the strength of association between variables j and k, this quantity is also a function of the variability of the two variables, and so, is hard to tease out the effects of the association between the two variables from the effects of their dispersions.

Note, however, that the covariance between variables i and j must lie between the product of the two component standard deviations of variables i and j, and negative of that same product:

-sisj ≤ sij ≤ sisj
Correlation: This suggests an alternative measure of association. The population correlation is defined to be equal to the population covariance divided by the product of the population standard deviations:
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The population correlation may be estimated by substituting into the formula the sample covariances and standard deviations:
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The thing to note here is the correlation must lie between -1 and 1.

- 1 ≤ rjk ≤ 1
Therefore: 

rjk = 0 indicates, as you might expect, that the two variables are uncorrelated . 

rjk close to +1 will indicate a strong positive dependence

rjk close to -1 indicates a strong negative dependence 



Example

Let's use the data from the USDA women’s health survey to illustrate some of the descriptive statistics that we just talked about. Recall that in this study 737 women aged 25-50 years were surveyed for the 5 nutritional components listed below:

· calcium (mg) 

· iron (mg) 

· protein(g)

· vitamin A(μg)

· vitamin C(mg)

We will use the SAS program called nutrient.sas to carry out the calculations that we would like to see. 

[image: image52.png]options 1s=78;
title "Exemple: Nutrient Intake Data - Descriptive Statistics”:

Eldata mutrient;
infile "D:\Statistics\STAT S05\data\nutrient.txt”;
input 1d caleium iron protein a c:

Elproc means;
var caleiun iron protein a o;

Elproc corr pearson cov;
var caleiun iron protein a o;




The lines of this program are saved in a simple text file with a .sas file extension. If you have SAS installed on machine on which you have download this file, it should launch SAS and open the program within the SAS application. Use the "Inspect" button below to work your way through the lines of programming. Marking up a print out of the SAS program is also a good strategy for learning how this program is put together.

	


	




The first part of this SAS output, (nutrient2.lst), is the results of the Means Procedure - proc means. Because the SAS output is usually a relatively long document, printing these pages of output out and marking them with notes is highly recommended if not required!

 

[image: image55.png]Example: Nutrient Intake Data - Descriptive Statistics

The MEANS Procedure
Variable N Mean Std Dev Mininun Max inun
calcium 737  624.0492537  397.2775401 7.4400000 2866.44
iron 737 11.1298996 5.9841905 o 58.6680000
protein 737 658034410 30.5757564 0 251,0120000
a 737 839.6353460 1633.54 o 34434.27
e 737 78.9284464 73.5952721 0 433.3330000





The first column of the Means Procedure table above gives the variable name. The second column reports the sample size. This is then followed by the sample means (third column) and the sample standard deviations (fourth column) for each variable. I have copied these values in to the table below. I have also rounded these numbers a bit to make them easier to use for this example.

	Variable
	Mean
	Standard Deviation

	Calcium
	624.0 mg
	397.3 mg

	Iron
	11.1 mg
	6.0 mg

	Protein
	65.8 mg
	30.6 mg

	Vitamin A
	839.6 μg
	1634.0 μg

	Vitamin C
	78.9 mg
	73.6 mg 


One thing that we can notice is that the standard deviations are large relative to their respective means. This would indicate a high variability among women in nutrient intake. What I mean by large has to take into account the problem at hand. What may be large in one application may be thought of as small in another. Skill in interpreting the statistical analysis depends very much on the the researcher's subject matter knowledge.

The variance-covariance matrix is the first table that is generated in the output following the CORR procedure. If you check you will see that I have copied the values from the output into the matrix below.
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Interpretation:

· The sample variances are given by the diagonal elements of S. For example the variance of iron intake is [image: image57.png]


. 35. 8 mg2. 

· The covariances are given by the off-diagonal elements of S. For example the covariance between calcium and iron intake is s12 = 940. 1. 

Since this covariance is positive, we see that calcium intake tends to increase with increasing iron intake. The strength of this positive association can only be judged by comparings12 to the product of the sample standard deviations for calcium and iron. This comparison is most readily accomplished by looking at the sample correlation between the two variables.

· Note that, the covariances are all positive, indicating that daily intake of each nutrient increases with increased intake of the remaining nutrients. 

Sample Correlations 

The sample correlations are found at the bottom of the output and these values have also been copied and included in the table below.

	
	Calcium
	Iron
	Protein
	Vit. A
	Vit. C

	Calcium
	1.000
	0.395
	0.500
	0.158
	0.229

	Iron
	0.395
	1.000
	0.623
	0.244
	0.313 

	Protein
	0.500
	0.623
	1.000
	0.147
	0.212 

	Vit. A
	0.158
	0.244
	0.147 
	1.000 
	0.184

	Vit. C
	0.229
	0.313
	0.212 
	0.184
	1.000


Here we can see that the correlation between each of the variables and themselves are all equal to one, and the off-diagonal elements give the correlation between each of the pairs of variables.

Generally, we look for the strongest correlations first. The results above suggest that protein, iron, and calcium are all positively associated. Each of these three nutrients increases with increasing values of the remaining two.

The coefficient of determination is another measure of association and is simply equal to the square of the correlation. For example, in this case, the coefficient of determination between protein and iron is (0.623)2 or about 0.388.
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This says that about 39% of the variation in iron intake is explained by protein intake. Or, conversely, 39% of the protein intake is explained by the variation in the iron intake. Both interpretations are equivalent.



Additional Measures of Dispersion

Sometimes it is also useful to have an overall measure of dispersion in the data. In this measure it would be good to include all of the variables. In the past we looked at the individual variables and their variances to measure the individual variances. Here we are going to look at measures of dispersion of all variables together, particularly we are going to look at such measures that look at total variation.

The variance [image: image59.png]


measures the dispersion of an individual variable j. The following measure the dispersion of all variables together.

· Total Variation 

· Generalized Variance 

To understand total variation we first must find the trace of a square matrix. A square matrix is a matrix that has an equal number of columns and rows. Important examples of square matrices include the variance-covariance and correlation matrices.

The trace of an n x n matrix A is
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For instance, in a 10 x 10 matrix, the trace is the sum of the diagonal elements. 

The total variation, therefore, of a random vector X is simply the trace of the population variance-covariance matrix.
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Thus, the total variation is equal to the sum of the population variances.

The total variation can be estimated by: 
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The total variation is of interest for principal components analysis and factor analysis and we will look at these concepts later in this course.



Example

Let's use the data from the USDA women’s health survey again to illustrate this. We have taken the variances for each of the variables from the SAS output and have placed them in the table below.

	Variable
	Variance

	Calcium
	157829.4 

	Iron
	35.8

	Protein
	934.9

	Vitamin A
	2668452.4

	Vitamin C
	5416.3

	Total
	2832668.8


The total variation for the nutrient intake data is determined by simply adding up all of the variances for each of the individual variables. The total variation equals 2,832,668.8. This is a very large number.

Problem: The problem with total variation is that it does not take into account correlations among the variables. 

These plots show simulated data for pairs of variables with different levels of correlation. In each case, the variances for both variables are equal to 1, so that the total variation is 2. 

When the correlation r = 0, then we see a shotgun-blast pattern of points, widely dispersed over the entire range of the plot.
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Increasing the correlation to r = 0.7, we see an oval-shaped pattern. Note that the points are not as widely dispersed.
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Increasing the correlation to r = 0.9, we see that the points fall along a 45 degree line, and are even less dispersed.
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Thus, the dispersion of points decreases with increasing correlation. But, in all cases, the total variation is the same. The total variation does not take into account the correlation between the two variables.

Fixing the variances, the scatter of the data will tend to decrease |r| → 1. 



The Determinant

The desire here is to have an overall measure of dispersion that takes into account the correlations among the variables. This measure should take a large value when the various variables show very little correlation among themselves. In contrast, this measure should take a small value if the variables show very strong correlation among themselves, either positive or negative. This particular measure of dispersion here is the generalized variance. In order to define the generalized variance we first define the determinant of the matrix.

We will start simple with a 2 x 2 matrix and then we will move on to more general definitions for larger matrixes.

So, let's consider the determinant of a 2 x 2 matrix B as shown below. Here we can see that it is the product of the two diagonal elements minus the product of the off-diagonal elements.
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Here is an example of a simple matrix that has the elements 5, 1, 2 and 4. You will get the determinant 18. The product of the diagonal 5 x 4 subtracting the elements of the off-diagonal 1 x 2 yields an answer of 18:
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The determinant of a 3 x 3 matrix B is going to be a function of the sub-matrixes of B as show below. Here we will work across the top row of the matrix to obtain the coefficients on the right hand side of the expression. Here, the elements of the first row of the matrix are b11, b12 and b13. You will also notice that we have alternating plus and minus signs. The 2 x 2 matrixes in the determinants on the right-hand side are obtained by removing the row and column corresponding to the element appearing before that determinant. Since b11 appears in the first term on the right-hand side, we we remove the first row and the first column from B, leaving the elements b22, b23, b32 and b33 for that determinant. 
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Likewise for the second term in the expression, we have b12 being multiplied by the determinant of the matrix obtained by eliminating the first row and the second column. In other words, it is comprised of the elements b21, b23, b31 and b33. And finally, the third element b13 is determinant obtained by removing the first row and the last column, leaving the elements b21, b 22, b31 and b32.

Here is an example of such a calculation.
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More generally the determinant of a general p x p matrix B is given by the expression shown below: 
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The expression involves the sum over all of the first row of B. Note that these elements are noted by b1j. These are pre-multiplied by -1 raised to the (j + 1)th power, so that basically we are going to have alternating plus and minus signs in our sum. The matrix B1j is obtained by by deleting row i and column j from the matrix B.

By definition the generalized variance of a random vector X is equal to |Σ|, the determinant of the variance/covariance matrix. The generalized variance can be estimated by calculating |S|, the determinant of the sample variance/covariance matrix. 



Example: Women's Nutrition Data

The generalized inverse for the Women's Nutrition data can be calculated using the SAS program nutrient3.sas below.

[image: image71.png]options 1s=78;
title "Exemple: Nutrient Intake Data - Generalized Variance”;

Eldata mutrient;
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finish;
use mutrient;
read all var(calciu iron protein a c} into x;
run genvar;




Click the SAS Program icon on the right to open this program with the SAS application that is installed on the computer you are working on. If you do not have SAS installed, a new window will open with the text of the program in it.

	


	




SAS Output - Discussion

The output from this program reports the sample variance/covariance matrix. 
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You should compare this output with the sample variance/covariance matrix output obtained from the corr procedure from our last program, nutrient2. You will see that we have the exact same numbers that were presented before. The generalized variance is that single entry in the far upper left hand corner. Here we see that the generalized variance is:
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Interpretation: 

In terms of interpreting the generalized variance, the larger the generalized variance the more dispersed the data are. Note that the volume of space occupied by the cloud of data points is going to be proportional to the square root of the generalized variance. 

Women’s Nutrition Example: 
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This represents a very large volume of space. Again, the interpretation of this particular number depends largely on subject matter knowledge. In this case, we can not say if this is a particularly large number or not unless we know more about women's nutrition.



Summary

In this lesson we learned how to: 

· interpret measures of central tendency, dispersion, and association

· calculate sample means, variances, covariances, and correlations using a hand calculator;

· use SAS to compute sample means, variances, covariances, and correlations.

Lesson 4: Linear Combinations of Random Variables 

Introduction

This lesson is concerned with linear combinations or if you would like linear transformations of the variables. Mathematically linear combinations can be expressed as shown in the expression below:
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Here what we have is a set of coefficients c1 through cp that are multiplied by their corresponding variables X1 through Xp. So, in the first term we have c1 times X1 which is added to c2 times X2 and so on up to the variable Xp. Mathematically this is expressed as the sum of j = 1,... p of the terms cj times Xj. The random variables X1 through Xp are collected into a vector X and the coefficient c1 to cp are collected into a vector c. And, the linear combination can be expressed as c transposed times the vector X.

The selection of the coefficients c1 through cp are very much dependent on the application of interest and what kinds of scientific questions we would like to address. 

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Interpret the meaning of a specified linear combination; 

· Compute the sample mean and variance of a linear combination from the sample means, variances, and covariances of the individual variables. 



Two Examples

Example: Women’s Nutrition Data

If you look at the Women's Nutrition data you might recall that we have following observations:

· X1 calcium (mg) 

· X2 iron (mg) 

· X3 protein(g) 

· X4 vitamin A(.g) 

· X5 vitamin C(mg) 

In addition to addressing questions about the individual nutritional component, we may wish to address questions about certain combinations of these components. For instance, we might want to ask what is the total intake of vitamins A and C (in mg). We note that in this case Vitamin A is measuring in micrograms while Vitamin C is measured in milligrams. There are a thousand micrograms per milligram so the total intake of the two vitamins, Y, can be expressed as the following:

Y = 0.001X4 + X5 

In this case, our coefficients c1 , c2 and c3 are all equal to 0 since the variables X1, X2 and X3 do not appear in this expression. In addition, c4 is equal to 0.001 since each microgram of vitamin A is equal to 0.001 milligrams of vitamin A. In summary, we have

c1 = c2 = c3 = 0, c4 = 0.001, c5 = 1 



Example: Monthly Employment Data

Another example where we might be interested in linear combinations is in the Monthly Employment Data. Here we have observations on 6 variables:

· X1 Number people laid off or fired 

· X2 Number of people resigning 

· X3 Number of people retiring 

· X4 Number of jobs created 

· X5 Number of people hired 

· X6 Number of people entering the workforce 

Net employment decrease: 
In looking at the net job increase, which is equal to the number of jobs created, minus the number of jobs lost.

Y = X4 - X1 - X2 - X3 

In this case we have the number of jobs created, (X4), minus the number of people laid off or fired, (X1), minus the number of people resigning, (X2), minus the number of people retired, (X3). These are all of the people that have left their jobs for whatever reason.

In this case c1 is equal to minus 1 as are c2 and c3. c4 is plus 1 and since variables 5 and 6 are not included in this expression, c5 and c6 are equal to 0.

Net employment increase: 
In a similar fashion, net employment increase is equal to the number of people hired, (X5), minus the number of people laid off or fired, (X1), minus the number of people resigning, (X2), minus the number of people retired, (X3).

Y = X5 - X1 - X2 - X3 

In this case c1 through c3 are all equal to minus 1. c4 = 0. c5 is equal to 1 and c6 is also equal to 0.

Net unemployment increase:
Net unemployment increase is going to be equal to the number of people laid off or fired, (X1), plus the number of people resigning, (X2), plus the number of people entering the workforce, (X6), minus the number of people hired, (X5).

Y = X1 + X2 + X6 - X5 

Unfilled jobs:
Finally, if we wanted to ask about the number of jobs that went unfilled, this is simply equal to the number jobs created, (X4), minus the number of people hired, (X5).

Y = X4 - X5 

In other applications, of course other linear combinations would be of interest.



Measures of Central Tendency

Whatever the case, one of the things that we would like to be able to do here is look at measures of central tendency, dispersion and association for linear combinations of variables. Since linear combinations are functions of random quantities, they also are going to be random, and hence have population means, variances. Moreover, if you are looking at several linear combinations, they will have covariances and correlations.

Questions that can be asked:

· What is the population mean of Y? 

· What is the population variance of Y? 

· What is the population covariance between two linear combinations Y1 and Y2? 

Population Mean:
Let's looks at the population mean of linear combinations. It turns our that the population mean of a linear combination is equal to the same linear combination of the population means of the component variable. As described in the expression below, the population mean of the linear combination Y is equal to c1 times mean of the 1st variable plus c2 times mean 2nd variable and so on up to cp times the mean of pth variable. 
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Mathematically you express this as the sum of j = 1 to p of cp times the corresponding mean of the jth variable. If the coefficient c's are collected into a vector c and the mean μ are collected into a mean vector μ you can express this as c transposed μ.

We can estimate the population mean by replacing the population means with the corresponding sample means; that is replace all of the μ's with [image: image79.png]
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plus c1 times [image: image82.png]


and so on...
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Example: Women’s Nutrition Data

The following table shows the sample means for each of our five nutritional components that we computed in the previous lesson.

	Variable
	Mean

	Calcium
	624.0 mg

	Iron
	11.1 mg

	Protein
	65.8 mg

	Vitamin A
	839.6 μg

	Vitamin C
	78.9 mg


If, as previously, we define Y to be the total intake of vitamins A and C (in mg) or : 

Y = 0.001X4 + X5 

Then we can work out the estimated mean intake of the two vitamins as follows: 
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= 0.001 x 839.6 + 78.9284 = 0.8396 + 78.9284 = 79.7680 mg






Population Variance

Linear combinations not only have a population mean but they also have a population variance. The population variance of a linear combination is expressed as the following double sum of j = 1 to p and k = 1 to p over all pairs of variables. 
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In each term within the double sum, the product of the paired coefficients cj times ck is multiplied times the covariance between the jth and kth variables. If the covariances are collected in to matrix Σ this is equal to c transposed times Σ times c.

Expressions of vectors and matrices of this form are called a quadratic forms.

When using this expression, the covariance between the variables and itself, or σjj is simply equal to the variance of the jth variable, or sigma squared j. 
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The variance of the random variable y can be estimated by the sample variances, or s squared Y. This is obtained by substituting in the sample covariances and variances for the population variances and covariances as shown in the expression below.
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Here again we are summing over all possible pairs of variables and multiplying the sum by the product of the coefficients cj times ck times the sample covariance between the two variables j and k. 

A simplified calculation can be found below. This involves two terms. 
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The first term involves summing over all the variables. Here we take the squared coefficients and multiply them by their respective variances. In the second term, we sum over all unique pairs of variables j less than k. Again take the product of cj times ck times the covariances between variables j and k. Since each unique pair appears twice in the original expression, we must multiply by 2. 

Example: Women’s Nutrition Data

Looking at the Women's Nutrition survey data we obtained the following variance/covariance matrix as shown below from the previous lesson.
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If we wanted to take a look at the total intake of vitamins A and C (in mg) remember we defined this earlier as: 

Y = 0.001X4 + X5 

Therefore the sample variance of Y is equal to (0.001)2 times the variance for s4, plus the variance for s5, plus 2 times 0.001 times the covariance between 4 and 5. The next few lines carries out the mathematical calculations using these values. 
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Population Covariance

Sometimes we are interested in more than one linear combination or variable. In this case we may be interested in the association between those two linear combinations. More specifically, we can consider the covariance between two linear combinations of the data. 

Consider the pair of linear combinations:
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Here we have linear combination Y1 which is obtained by multiplying coefficient cj times the variables Xj and the linear combination Y2 which is obtained by multiplying coefficients dk times Xk. Both variables Y1 and Y2 are going to be random and so they will be potentially correlated. We can assess the association between these variables using the covariance.

The population covariance between Y1 and Y2 is obtained by summing over all pairs of variables. We then multiply respective coefficients from the two linear combinations as cj times dk times the covariances between j and k.
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We can then estimate the population covariance by using the sample covariance. This is obtained by simply substituting the sample covariances between the pairs of variables for the population covariances between the pairs of variables.
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The population correlation between variables Y1 and Y2 can be obtained by using the usual formula of the covariance between Y1 and Y2 divided by the standard deviation for the two variables as shown below:
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This population covariance is estimated by the sample correlation where we simply substitute in the sample quantities for the population quantities. In other words, the sample covariance between the two variables divided by the product of the two sample standard deviations. 
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Example: Women’s Nutrition Data

Here is the matrix of the data as was shown previously.
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We may wish to define the total intake of vitamins A and C in mg as before.

Y1 = 0.001X4 + X5 

and we may also want to take a look at the total intake of calcium and iron:

Y2 = X1 + X2 

Then the sample covariance between Y1 and Y2 can be then obtained by looking at the covariances between each pair of the component variables time the respective coefficients. So in this case we are looking at pairing X1 and X4, X1 and X5, X2 and X4, and X2 and X5. You will notice that in the expression below s41, s42, s51 and s52 all appear. The variables are taken from the matrix above and substituting them into the expression and the math is carried out below.
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You should be able at this point to be able to confirm that the sample variance of Y2 is 159,745.4 as shown below:
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And, if we care to obtain sample correlation between Y1 and Y2 we take the sample covariance that we just obtained and divide by the square root of the product of the two component variances, 5463.1, for Y1 which we obtained earlier and 159745.4 which we just obtained above. Following this math through we end up with a correlation of about 0.235 as shown below. 
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Summary

In this lesson we learned about: 

· The definition of of a linear combination of random variables;

· Expressions of the population mean and variance of linear combination and the covariance between two linear combinations; 

· How to compute sample mean of a linear combination from the sample means of the component variables; 

· .How to compute the sample variance of a linear combination from the sample variances and covariances of the component variables; 

· How to compute the sample covariance and correlation between two linear combinations from the sample covariances of the component variables. 

Lesson 5: Multivariate Normal Distribution

Introduction

This lesson is concerned with the multivariate normal distribution. Just as the univariate normal distribution tends to be the most important statistical distribution in univariate statistics, the multivariate normal distribution is the most important distribution in multivariate statistics.

The question one might ask is, "Why is the multivariate normal distribution so important?" There are three reasons why this might be so:

1. Mathematical Simplicity. It turns out that this distribution is relatively easy to work with, so it is easy to obtain multivariate methods based on this particular distribution. This has led to the development of most multivariate methods.

2. Multivariate version of the Central Limit Theorem. You might recall in the univariate course that we had a central limit theorem for the sample mean for large samples of random variables. A similar result is available in multivariate statistics that says if we have a collection of random vectors X1, X2,...,Xn that are independent and identically distributed, then the sample mean vector, [image: image100.png]


, is going to be approximately multivariate normally distributed for large samples.

3. Many natural phenomena also exhibit this distribution, just as in the univariate case. 

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Understand the definition of the multivariate normal distribution; 

· Compute eigenvalues and eigenvectors for a 2 x 2 matrix; 

· Determine the shape of the multivariate normal distribution from the eigenvalues and eigenvectors of the multivariate normal distribution.



Comparing Distribution Types

Univariate Normal Distributions 

Before defining the multivariate normal distribution we will define the univariate normal distribution. Here we are looking at a random variable X is normally distributed with mean μ and variance σ2 if it has the probability density function of X as expressed below:
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This results in the usual bell-shaped curve that you will see throughout statistics. In this expression, you will see the difference between the variable x and its mean, μ, quantity squared. This value will take a minimum value when x is equal to μ. Minus 1 over 2 σ2 times (x - μ) will take its largest value when x is equal to μ or likewise, since the exponential function is a monotone function, the normal density takes a maximum value when x is equal to μ.

The variance σ2 defines the spread of the distribution about that maximum. If σ2 is large then the spread is going to be large, otherwise if the σ2 value is small then the spread will be small.

As shorthand notation we may use the expression below:
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Here we have X 'is distributed according to' (denoted by the wavey symbol 'tilde') a normal distribution (denoted by N), with mean μ and variance σ2.

Multivariate Normal Distributions 

Here, if we have a p x 1 random vector X that is distributed according to a multivariate normal distribution with population mean vector μ and population variance-covariance matrix Σ, then this random vector, X, will have the joint density function as shown in the expression below:
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Here, the |Σ| denotes determinant of the variance-covariance matrix Σ and inside the exponent Σ raised to the minus one is just the inverse of the variance-covariance matrix Σ. Again, this distribution will take maximum values when the vector X is equal to the mean vector μ, and decrease around that maximum.

If p is equal to 2, then we have just a bivariate normal distribution and this will yield a bell-shaped curve but now in three dimensions. 

The shorthand notation, similar to the univariate version above: 
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We use the expression the vector X 'is distributed as' multivariate normal with mean vector μ and variance-covariance matrix Σ.

Some things to note about the multivariate normal distribution:

1. The following term appearing inside the exponent of the multivariate normal distribution is a quadratic form:
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This particular quadratic form is also called the squared Mahalanobis distance between the random vector x and the mean vector μ. 

2. If the variables are uncorrelated then the variance-covariance matrix will be a diagonal matrix with variances of the individual variables appearing on the diagonal elements of the matrix and zeros everywhere else:
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In this case the multivariate normal density function simplifies to the expression below: 
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Here you will notice the product term, given by 'captial' pi, (Π), acts very much like the summation sign, but instead of adding we are going to multiply over the elements ranging from j to p. Inside this product you will see the familiar univariate normal distribution where the variances are subscripted by j and the random variables are also subscripted by j. In this case, the elements of the random vector, X1, X2,., Xp, are going to be independent random variables.

3. We could also consider linear combinations of the elements of a multivariate normal random variable as shown in the expression below:
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Here we have coefficient cj multiplied by the elements of Xj of our random vector, summed over all variables in that random vector. In matrix notation we can write c transposed X where c contains all of the coefficients cj and X contains the variable components of the random vector.

Again, as before, the coefficients cj are chosen arbitrarily, specific values are selected according to the problem of interest and so is influenced very much by subject matter knowledge. Looking back at the Women's Nutrition Survey Data, for example, we selected the coefficients to obtain the total intake of vitamins A and C. 

Now suppose that the random vector X is multivariate normal with mean μ and variance-covariance matrix Σ.
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Then Y is normally distributed with mean:
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and variance:
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Now in this case, we see that the population mean of Y is equal to the same linear combination of the population means of the component random variables Xj. See previous lesson to review the computation of the population mean of a linear combination of random variables. The population variance of Y is obtained by summing over all pairs of variables; inside the sum we multiply the product of the coefficients cj and ck for the jkth pair variables times the covariances between that pair of variables.

In summary, Y is normally distributed with mean c transposed μ and variance c transposed Σ times c. 
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Example: Bivariate Normal Distribution

To further understand the multivariate normal distribution it is helpful to look at the bivariate normal distribution. Here our understanding is facilitated by being able to draw pictures of what this distribution looks like.

Here we can see that we have just two variables, X1 and X2 and that these are bivariately normally distributed with mean vector components μ1 and μ2 and variance-covariance matrix taking the form as shown below:
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In this case we have the variances for the two variables in the diagonal element and on the off-diagonal we have the covariance between the two variables. This covariance is equal to the correlation times the product of the two standard deviations. The determinant of the variance-covariance matrix is simply equal to the product of the variances times 1 minus the squared correlation. 
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The inverse of the variance-covariance matrix takes the form below:
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Substituting in the expressions for the determinant and the inverse of the variance-covariance matrix we obtain, after some simplification, the joint probability density function of (X1, X2) for the multivariate normal distribution is show below: 
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The links to the following three plots are plots of the bivariate distribution for the various values for the correlation row.

	The first plot shows the case where the correlation ρ is equal to zero. This special case is called the circular normal distribution. Here, we have a perfectly symmetric bell-shaped curve in three dimensions.
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	As ρ increases that bell-shaped curve becomes flattened on the 45 degree line. So for ρ equals 0.7 we can see that the curve extends out towards minus 4 and plus 4 and becomes flattened in the perpendicular direction.
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	Increasing ρ to 0.9 the curve becomes broader and the 45 degree line and even flatter still in the perpendicular direction. 
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These three curves were produced using the SAS program normplot.sas shown below. The desired correlation is specified in the third line of the SAS code (here at 0.9). No other changes are required to run this program. It would be a good idea to try this program for various values of r between -1 and 1 to explore how the shape of the normal distribution varies with the correlation. 

[image: image120.png]options 1s=78;
title "Bivariate Normal Density”;
slet 1=0.9;

data a;

o x2=-1 to 4 by 0.1;
Phisexp (- (x1%X1-2%6E X1 K2 4x272) 2/ (1-6r76x) ) /2/pi/oqre (1-er¥er) ;
output;

end;
end;

Eproc g3a;
Plot x1%x2=phi / rotate=-20;




options ls=78;

title "Bivariate Normal Density";

%let r=0.9;

data a;

  pi=3.1416;

  do x1=-4 to 4 by 0.1;

    do x2=-4 to 4 by 0.1;

      phi=exp(-(x1*x1-2*&r*x1*x2+x2*x2)/2/(1-&r*&r))/2/pi/sqrt(1-&r*&r);

      output;

    end;

  end;

  run;

proc g3d;

  plot x1*x2=phi / rotate=-20;

  run;

Note that this code assumes that the variances are both equal to one.

Geometry of the Multivariate Normal 

Recall the Multivariate Normal Density function below: 
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You will note that this density function, φ(x), only depends on x through the squared Mahalanobis distance:
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Thus, this density, φ(x), is constant for all values of x such that the Mahalanobis distance equals a constant, c2
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This is the equation for a hyper-ellipse centered at μ. 

For a bivariate normal, where p = 2 variables, we have an ellipse as shown in the plot below:
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The question that we might want to ask now is, "What is the probability that an arbitrary or random observation will fall inside the ellipse?"

This probability can be determined by the following proposition.

Proposition: If we have p x 1 multivariate normal random vector [image: image125.png]X ~ N(p.X)



then the squared Mahalanobis distance between x and μ is going to be chi-square distributed with p degrees of freedom.
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So if we define a specific hyper-ellipse by taking the squared Mahalanobis distance equal to a critical value of the chi-square distribution with p degrees of freedom and evaluate this at α, then the probability that the probability of that random value X will fall inside the ellipse is going to be equal to 1 - α.
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The ellipse defined by
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This particular ellipse is called the (1 - α) x 100% prediction ellipse for a multivariate normal random vector with mean vector μ and variance-covariance matrix Σ. 



Eigenvalues and Eigenvectors 

The next thing that we would like to be able to do is to describe the shape of this ellipse mathematically so that we can understand how the data are distributed in multiple dimensions under a multivariate normal. To do this we first must define the eigenvalues and the eigenvectors of a matrix.

In particular we will consider the computation of the eigenvalues and eigenvectors of a symmetric matrix A as shown below:
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Note: we would call the matrix symmetric if the elements aij are equal to aji for each i and j.

Usually A is taken to be either the variance-covariance matrix Σ, or the correlation matrix, or their estimates S and R, respectively. 

Eigenvalues and eigenvectors are used for: 

· Computing prediction and confidence ellipses 

· Principal Components Analysis (later in the course)

· Factor Analysis (also later in this course)

For the present we will be primarily concerned with eigenvalues and eigenvectors of the variance-covariance matrix.

First of all let's define what these terms are...

Eigenvalues

Definition: If we have a p x p matrix A we are going to have p eigenvalues, λ1, λ2 ... λp. They are obtained by solving the equation given in the expression below: 
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On the left-hand side, we have the matrix A minus λ times the Identity matrix. When we calculate the determinant of the resulting matrix, we end up with a polynomial of order p. Setting this polynomial equal to zero, and solving for λ we obtain the desired eigenvalues. In general, we will have p solutions and so there are p eigenvalues, not necessarily all unique. 

Definition: The corresponding eigenvectors e1, e2, ...,ep are obtained by solving the expression below: 

[image: image131.png])




Here, we have the difference between the matrix A minus the jth eignevalue times the Identity matrix, this quantity is then multiplied by the jth eigenvector and set it all equal to zero. This will obtain the eigenvector ej associated with eigenvalue λj.

Note: This does not have a generally have a unique solution. So, to obtain a unique solution we will often require that ej transposed ej is equal to 1. Or, if you like, the sum of the square elements of ej is equal to 1.
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Example: Consider the 2 x 2 matrix 

To illustrate these calculations consider the correlation matrix R as shown below: 
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Then, using the definition of the eigenvalues, we must calculate the determinant of R - λ times the Identity matrix. 
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So, R in the expression above is given in blue, and the Identity matrix follows in red, and λ here is the eigenvalue that we wish to solve for. Carrying out the math we end up with the matrix with 1 - λ on the diagonal and ρ on the off-diagonal. Then calculating this determinant we obtain 1 - λ squared minus ρ2:
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Setting this expression equal to zero we end up with the following...
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To solve for λ we use the general result that any solution to the second order polynomial below:

[image: image137.png]al+by+c=0




is given by the following expression:
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Here, a = 1, b = 2 (the term that precedes λ and c is equal to 1 - ρ2. Substituting these terms in the equation above, we obtain that λ must be equal to 1 plus or minus the correlation ρ.
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Here we will take the following solutions:
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Next, to obtain the corresponding eigenvectors, we must solve a system of equations below:
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This equals R - λ times I, this product multiplied by the eigenvector quantity times the eigenvector e equal to 0. Or in other words, this is translated for this specific problem in the expression below: 
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This simplifies as follows:

[image: image143.png]



Yielding a system of two equations with two unknowns:
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Note that this does not have a unique solution. If (e1, e2) is one solution, then a second solution can be obtained by multiplying the first solution by any non-zero constant c, i.e., (ce1, ce2). Therefore, we will require the additional condition that the sum of the squared values of e1 and e2 are equal to 1. 
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Consider the first equation:

[image: image146.png]



Solving this equation for e2 and we obtain the following:
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Substituting this into [image: image148.png]


we get the following:
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Recall that [image: image150.png]


. In either case we end up finding that [image: image151.png]


, so that the expression above simplifies to:
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Or, in other words:
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Using the expression for e2 which we obtained above, 
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we get 

[image: image155.png]


for[image: image156.png]


 and [image: image157.png]


for [image: image158.png]



Therefore, the two eigenvectors are given by the two vectors as shown below:

[image: image159.png]fal- s

for A1

1+pand

wk ™





Some properties of the eigenvalues of the variance-covariance matrix to consider. Suppose that λ1 through λp are the eigenvalues of the variance-covariance matrix Σ. By definition, the total variation is given by the sum of the variances. It turns out that this is also equal to the sum of the eigenvalues of the variance-covariance matrix. Thus, the total variation is:
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The generalized variance is equal to the product of the eigenvalues:

[image: image161.png]P
=]l =Ax2x %2,
1




Geometry of the Multivariate Normal Distribution (revisited)

The geometry of the multivariate normal distribution can be investigated by considering the orientation, and shape of the prediction ellipse as depicted in the following diagram:

[image: image162.png]



The (1 - α) x 100% prediction ellipse above is centered on the population means μ1 and μ2.

The ellipse has axes pointing in the directions of the eigenvectors e1, e2, ..., ep. Here, in this diagram for the bivariate normal, the longest axis of the ellipse points in the direction of the first eigenvector e1 and the shorter axis is perpendicular to the first, pointing in the direction of the second eigenvector e2.

The corresponding half-lengths of the axes are obtained by the following expression: 
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The plot above captures the lengths of these axes within the ellipse.

The volume (area) of the hyper-ellipse is equal to:
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Note that this is a function of the square-root of the generalized variance (given by the square root of the determinant of the variance-covariance matrix). Thus, the volume (area) of the prediction ellipse is proportional to the square root of the generalized variance.

In this expression for the volume (area) of the hyper-ellipse, Γ(x) is the gamma function. To compute the gamma function, consider the two special cases:

-p even 
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-p odd 

[image: image166.png]e

1x3x5x%x

X (p-2)x /T
2-1)72




We shall illustrate the shape of the multivariate normal distribution using the Wechsler Adult Intelligence Scale data.

Example: Wechsler Adult Intelligence Scale 

Here we have data on n = 37 subjects taking the Wechsler Adult Intelligence Test . This test is broken up into four different components:

· Information 

· Similarities

· Arithmetic 

· Picture Completion 

The data are stored in the file named wechslet.txt in five different columns. The first column is the ID number of the subjects, followed by the four component tasks in the remaining four columns. Info is short for information, Sim short for Similarities, Arith short for Arithmetic, and Pic short for Picture Completion. 

These data may be analyzed using the sas program wechsler.sas shown below. 

[image: image167.png]options 1s=78;
title "Eigenvalues and Eigenvectors - Vechsler Data”;

Eldata wechsler;
infile "D:\Statistics\STAT 505\data\vechsler.txt”;
input 1d info sim arith pict;

Elproc print;

Elproc princomp cov;
var info sin arith pict;




options ls=78;

title "Eigenvalues and Eigenvectors - Wechsler Data";

data wechsler;

  infile "D:\Statistics\STAT 505\data\wechsler.txt";

  input id info sim arith pict;

  run;

proc print;

  run;

proc princomp cov;

  var info sim arith pict;

  run;

Walk through the procedures of the program by clicking on the "Inspect" button. You can also launch the program by clicking on the "Launch SAS" button on the right. Just as in previous lessons, marking up a print out of the SAS program is also a good strategy for learning how this program is put together. 

wechsler.lstThe SAS output, (), gives the results of the data analyses. Because the SAS output is usually a relatively long document, printing these pages of output out and marking them with notes is highly recommended if not required!

In the output, means and standard deviations for all four variables are given at the top of second page of the output. Means are given in the first row. Those means have been copied into the table shown below: 

Sample Means from SAS Output: 

	Variable
	Mean

	Information
	12.568

	Similarities
	9.568

	Arithmetic
	11.486

	Picture Completion
	7.973 


Immediately below the means is the standard deviations for the individual variables in the variance-covariance matrix, which is also been copied into the table shown below:

Standard Deviations for the Variance-Covariance Matrix from the SAS Output: 
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Here, for example, the variance for Information was 11.474. For Similarities it was 12.086. The covariance between Similarities and Information is 9.086. The total variance, which is the sum of the variances comes out to be 38.344, approximately. 

The eigenvalues are given in the third table of second page of the output and are shown below here as well: 
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and finally at the bottom of the table we have the corresponding eigenvectors. They have been listed here below: 
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For example, the eigenvectors corresponding the the eigenvalue 26.245, those elements are 0.606, 0.605, 0.505, and 0.110. 

Now, let's consider the shape of the 95% prediction ellipse formed by the multivariate normal distribution whose variance-covariance matrix is equal to the sample variance-covariance matrix which we just obtained. 

Recall the formula for the half-lengths of the axis of this ellipse. This is equal to the square root of the eigenvalue times the critical value from a chi-square table.In this case, since we have four variables, this should be chi-square with four degrees of freedom. In this case, if we are going to consider a 95% prediction ellipse, the critical value for chi-square with four degrees of freedom is equal to 9.49 from the statistical table. 

For looking at the first and longest axis of a 95% prediction ellipse, we substitute 26.245 for the largest eigenvalue, multiplied by 9.49 and take the square root. We end up with a 95% prediction ellipse with a half-length of 15.782 as shown below: 
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The direction of the axis is given by the first eigenvector. Looking at this first eigenvector we can see large positive elements corresponding to the first three variables. In other words, large elements for Information, Similarities, and Arithmetic. This suggests that this particular axis points in the direction specified by e1; that is, increasing values of Information, Similarities, and Arithmetic. 

The half-length of second longest axis can be obtained by substituting 6.255 for the second eigenvalue, multiplying this by 9.49, and taking the square root. We obtain a half-length of about 7.7, or about half the length of the first axis. 
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So, if you were to picture this particular ellipse you would see that the second axis is about half the length of the first and longest axis.

Looking at the corresponding eigenvector, e2, we can see that this particular axis is pointed in the direction of points in the direction of increasing values for the third value, or Arithmetic and decreasing value for Similarities, the second variable. 

Similar calculations can then be carried out for the third longest axis of the ellipse as shown below:
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This third axis has half-length of 6.108, which is not much shorter or smaller than the second axis. It points in the direction of e3; that is, increasing values of Picture Completion and Information, and decreasing values of Similarities and Arithmetic. 

The shortest axis has half-length of about 4.260 as show below:
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It points in the direction of e3; that is, increasing values of Similarities and Picture Completion, and decreasing values of Information. 

The overall shape of the ellipse can be obtained by comparing the lengths of the various axis. What we have here is basically and ellipse that is the shape of a slightly squashed football. 

We can also obtain the volume of the hyper-ellipse using the formula that was given earlier. Again, our critical value from the chi-square, if we are looking at a 95% confidence ellipse, with four degrees of freedom is given at 9.49. Substituting into our expression we have the product of the eigenvalues in the square root. The gamma function is evaluated at 2, and gamma of 2 is simply equal to 1. Carrying out the math we end up with a volume of 15,613.132 as shown below:
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Special Cases: p = 2 

To further understand the shape of the multivariate normal distribution, let's return to the special case where we have p = 2 variables. 

If p = 0, there is zero correlation, then the eigenvalues turn out to be equal to variances of the two variables. So, for example, the first eigenvalue would be equal to σ21 and the second eigenvalue would be equal to σ22 as shown below:
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the corresponding eigenvectors will have elements 1 and 0 for the first eigenvalue and 0 and 1 for the second eigenvalue.
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So, the axis of the ellipse, in this case, are parallel to the coordinate axis.

If there is zero correlation, then the variances are equal, that σ21 equals σ22. Then both of the eigenvalues will be equal to one another, and instead of an ellipse we will get a circle. In this special case we have a so-called circular normal distribution.
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If the correlation is greater than zero, then the long axis of the ellipse will have a positive slope. 
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Conversely, if the correlation is less than zero, then the longest axis of the ellipse will have a negative slope.

As the correlation approaches plus or minus 1, then largest eigenvalue will approach the sum of the two variances, and the smallest eigenvalue will approach zero:

[image: image180.png]A1 = o}+o}and Ay = 0




So, what is going to happen in this case is that the ellipse becomes more and more elongated as the correlation approaches zero.
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The SAS program ellplot.sas below can be used to plot the 95% confidence ellipse corresponding to any specified variance-covariance matrix. 
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title "95% prediction ellipse”;
Eldata a;
pi=2.a0%arsin(1);
do 120 to 200;
thetaspivi/100;
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output:
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read all var{u v} into z;
run ellipse;

Elproc gplot;

axisl order=-5 to 5 length=3 in;
axis2 order=-5 to 5 length=3 in:
axis? vref=0 href=0;

plot yox / vaxissaxisl haxi:
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Summary

In this lesson we learned about: 

· The probability density function for the multivariate normal distribution; 

· The definition of a prediction ellipse; 

· How the shape of the multivariate normal distribution depends on the variances and covariances;

· The definitions of eigenvalues and eigenvectors of a matrix, and how they may be computed; 

· How to determine the shape of the multivariate normal distribution from the eigenvalues and eigenvectors of the variance-covariance matrix

Lesson 6: Properties of the Sample Mean Vector and Sample Correlation

Introduction

In this lesson we consider the properties of the sample mean vector and the sample correlation which we had defined earlier. 

Throughout this lesson we will be making the assumption that our random vectors

X1, X2,...,Xn 

are independently sampled from a population with mean vector μ and variance-covariance matrix Σ. Unless stated otherwise, we will not assume that the data are sampled from a multivariate normal distribution.

We first shall consider the properties of the sample mean vector. The following shall compare and contrast the properties of the sample mean vector in the multivariate setting with the properties of the sample mean in the univariate setting.

Lesson Objectives:

Upon completion of this lesson, you should be able to answer the following questions regarding sample mean vectors and correlations.

Sample Mean Vectors
· What is the variance-covariance matrix of [image: image183.png]


?

· What are the properties of [image: image184.png]


when the sample size n is larger?

· What is the distribution of [image: image185.png]


?

· When is the distribution of [image: image186.png]


exactly multivariate normal, and when is it only approximately multivariate normal? 

Sample Correlations
· How can we test the null hypothesis that there is zero correlation between two variables?

· What can we conclude from such hypothesis tests?

· How can we assess uncertainty regarding estimated correlation coefficients using confidence intervals?

· What is the appropriate interpretation for confidence intervals?



Inferences for Sample Mean Vectors

We first shall consider the properties of the sample mean vector [image: image187.png]


. The following shall compare and contrast the properties of the sample mean vector in the multivariate setting with the properties of the sample mean in the univariate setting.

Since the [image: image188.png]


is a function the random data, [image: image189.png]


is also a random vector and hence, has a mean, a variance-covariance matrix and a distribution. We have already seen that the mean of the sample mean vector is equal to the population mean vector μ. 

1. Variance 

Before considering the sample variance-covariance matrix for the mean vector [image: image190.png]


, let's consider the univariate setting.

Univariate Setting: You should recall from introductory statistics that the population variance of the sample mean, generated from independent samples of size n, is equal to the population variance, σ2 divided by n.
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This, of course, is a function of the unknown population variance σ2. We can estimate this by simply substituting in the sample variance s2 for σ2 yielding our estimate for the variance of the population mean s2 over n as shown below:
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If we were to take the square root of this quantity we would obtain the standard error of the mean. The standard error of the mean is a measure of the uncertainty of our estimate of the population mean. If the standard error is large, then we are uncertain of our estimate of the mean. Conversely, if the standard error is small, then we are not uncertain of our estimate. What is meant by large or small depends on the application at hand. But in any case, since the standard error is a decreasing function of sample size, the larger our sample the more certain we can be of our estimate of the population mean.

Multivariate Setting: The population variance-covariance matrix replaces the variance of the [image: image193.png]


’s generated from independent samples of size n, taking a similar form as what was seen in the univariate setting. That is, the variance-covariance matrix of [image: image194.png]


is equal to 1 over n times the population variance-covariance matrix of the individual observations as shown below: 
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Again, this is a function of the unknown population variance-covariance matrix Σ. An estimate of the variance-covariance matrix of [image: image196.png]


can be obtain by substituting the sample variance-covariance matrix S for the population variance-covariance matrix Σ, yielding the estimate as shown below: 
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2. Distribution

Let's consider the distribution of the sample mean vector, first looking at the univariate setting and comparing this to the multivariate setting.

Univariate Setting: Here we are going to make the additional assumption that X1, X2,...,Xn are independently sampled from a normal distribution with mean μ and variance σ2. Then, in this case, [image: image198.png]


is going to be normally distributed also with mean μ but with variance σ2 over n. Mathematically we use the following notation as shown below.
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Here [image: image200.png]


is followed by the symbol 'tilde', which means 'is distributed as'. N stands for the normal distribution and in parentheses we have the mean followed by the variance of the normally distributed random sample mean.

Multivariate Setting: Similarly, for the multivariate setting, we are going to assume that the data vectors X1, X2,...,Xn are independently sampled from a multivariate normal distribution with mean vector μ and variance-covariance matrix Σ. Then, in this case, the sample mean vector, [image: image201.png]


, is distributed as multivariate normal with mean vector μ and variance-covariance matrix [image: image202.png]


, the variance-covariance matrix for [image: image203.png]


. In statistical notation we write:
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3. Law of Large Numbers

At this point we will drop the assumption that the individual observations are sampled from a normal distribution and look at laws of large numbers. These will hold regardless of the distribution of the individual observations.

Univariate Setting: In the univariate setting, we see that if the data are independently sampled, then the sample mean, [image: image205.png]


, is going to converge (in probability) to the population mean μ. What does this mean exactly? It means that as the sample size gets larger and larger the sample mean will tend to approach the true value for a population μ.

Multivariate Setting: A similar result is involved in the multivariate setting , the sample mean vector, [image: image206.png]


, will also converge (in probability) to the mean vector μ;. That is as our sample size gets larger and larger, each of the individual components of that vector, [image: image207.png]


j, will converge to the corresponding means, μj.
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4. Central Limit Theorem 

Just as in the univariate setting we also have a multivariate Central Limit Theorem. But first, let's review the univariate Central Limit Theorem. 

Univariate Setting. If all of our individual observations, X1, X2,...,Xn, are independently sampled from a population with mean μ and variance σ2, then, the sample mean,[image: image209.png]


, is approximately normally distributed with mean μ and variance σ2/n. This differs from Property 2: Distribution, which specifically requires that the data are sampled from a normal distribution. Under Property 2: Distribution, we found that even for small samples the data are going to be normally distributed. The Central Limit Theorem is a more general result which holds regardless of the distribution of the original data and basically says that the sample mean is going to be approximately normally distributed for large samples regardless of the distribution of the individual observations.

Multivariate Setting. A similar result is available in the multivariate setting. If our data vectors X1, X2,...,Xn, are independently sampled from a population with mean vector μ and variance-covariance matrix Σ, then the sample mean vector, [image: image210.png]


, is going to be approximately normally distributed with mean vector μ and variance-covariance matrix [image: image211.png]


, the variance-covariance matrix for the original data.

This Central Limit Theorem is a key result that we will take advantage of later on this course when we talk about hypothesis tests about individual mean vectors or collections of mean vectors under different treatment regimens.



Inferences for Correlations 

Let's consider testing the null hypothesis that there is zero correlation between two variables j and k. Mathematically we write this as shown below:

Ho : ρjk = 0 against Ha : ρjk ≠ 0

Recall that the correlation is estimated by sample correlation rjk given in the expression below:
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Here we have the sample covariance between the two variables divided by the square root of the product of the individual variances.

We shall assume that the pair of variables j and k are independently sampled from a bivariate normal distribution throughout this discussion; that is:

[image: image213.png]



are independently sampled from a bivariate normal distribution. 

To test the null hypothesis, we form the test statistic, t which is equal to the sample correlation times the square root of n - 2 divided by the quantity of 1 minus the correlation squared:
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Under the null hypothesis, Ho, this test statistic will be approximately t distributed with n-2 degrees of freedom. Note that this approximation holds for larger samples. We will reject the null hypothesis, Ho, at level α if the absolute value of the test statistic, t, is greater than the critical value from the t-table with n-2 degrees of freedom; that is if:
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To illustrate these concepts let's return to our example dataset, the Wechsler Adult Intelligence Scale.

Example: Wechsler Adult Intelligence Scale 



These data were analyzed using the SAS program wechsler.sas in our last lesson, (Multivariate Normal Distribution), which yielded the 
computer output, wechsler.lst. Recall that these are data on n = 37 subjects taking the Wechsler Adult Intelligence Test. This test was broken up into four components: 

· Information

· Similarities

· Arithmetic

· Picture Completion 

Looking at the computer output we have summarized the correlations among variables in the table below:

	 
	Information
	Similarities
	Arithmetic
	Picture

	Information
	1.00000 
	0.77153
	0.56583 
	0.31816

	Similarities
	0.77153
	1.00000 
	0.51295 
	0.08135

	Arithmetic
	0.56583
	0.51295 
	1.00000
	0.27988

	Picture
	0.31816
	0.08135
	0.27988
	1.00000 


For example, the correlation between Similarities and Information is 0.77153. 

Let's consider testing the null hypothesis that there is no correlation between Information and Similarities. This would be written mathematically as shown below: 

Ho : ρ12 = 0 

We can then substitute values into the formula to compute the test-statistic using the values from this examples. This example is worked out below: 
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Looking at our t-table for 35 degrees of freedom and an α level of .005, we get a critical value of t(df,1-α/2) = t35, 0.9975 = 3.030. Therefore, we are going to look at the critical value under 0.0025 in the table (since 35 does not appear use the closest df that does not exceed 35 which is 30) and in this case it is 3.030, meaning that t(df,1-α/2) = t(33,0.9975) is 3.030. NOTE: Some text tables provide the right tail probability (the graph at the top will have the area in the right tail shaded in) while other texts will provide a table with the cumulative probability - the graph will be shaded in to the left. The concept is the same. For example, if alpha was 0.01 then using the first text you would look under 0.005 and in the second text look under 0.995.

Since 

7.175 > 2.93.030 = t35,0.9975, 

we can reject the null hypothesis that Information and Similarities scores are uncorrelated at the α < 0.01 level.

Our conclusion here is that: Similarities scores increase with increasing Information scores (t = 7.175; d.f. = 35; p < 0.0001). You will note here that I am not simply concluding that the results are significant. When drawing conclusions it is never, never adequate to simply state that the results are significant. In all cases you should seek to describe what the results tell you about this data. In this case, since we rejected the null hypothesis we can concluded that the correlation is not equal to zero, but furthermore since the actual sample correlation is greater than zero, we can further conclude that there is a positive association between the two variables, and hence our conclusion that Similarities scores tend to increase with increasing values of Information scores. 

You will also note that this is not the only information that I am giving under my conclusion. When giving conclusions you should also back up those conclusions with the appropriate evidence: the test statistic, degrees of freedom (if appropriate), and p-value. Here the appropriate evidence is given by the test statistic t = 7.175; the degrees of freedom for the test, here 35, and the p-value is less than 0.0001 as indicated from the computer print out. The p-value appears below each correlation coefficient in the SAS output.

Confidence Interval for pjk
Once we conclude that there is a positive or negative correlation between two variables the next thing we might want to do is to compute a confidence interval for the correlation. This confidence interval will give us a range of reasonable values for the correlation itself. The sample correlation, because it is bounded between -1 and 1 is typically not normally distributed or even approximately so. Sample correlations near zero may be approximately bell-shaped in distribution, but as they approach either bound, the data values will tend to pile up against those bounds. For example, if you have a positive correlation you'll tend to find a lot of positive values piling up near one, and a long tail trailing off to the left. Similarly, in a negative correlation the values will pile up near -1 and potentially and a tail going off to the right. To adjust for this asymmetry, or the skewness of distribution, we apply a transformation of the correlation coefficients. In particular, we are going to apply Fisher's transformation which is given in the expression below in Step 1 of our procedure for computing confidence intervals for the correlation coefficient.

Step 1: Compute Fisher’s transformation
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Here we have one half of the natural log of 1 plus the correlation, divided by one minus the correlation.

Note: In this course, whenever log is mentioned, unless specified otherwise, log stands for the natural log.

For large samples, this transform correlation coefficient z is going to be approximately normally distributed with the mean equal to same transformation of the population correlation, as shown below, and a variance of 1 over the sample size minus 3.
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Step 2: Compute a (1 - α) x 100% confidence interval for the Fisher transform of the population correlation.
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That is, one half log of 1 plus the correlation divided by 1 minus the correlation. In other words, this confidence interval is given by the expression below:
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Here we take the value of Fisher's transform Z, plus and minus the critical value from the z table, divided by the square root of n - 3. The lower bound we will call the Zl and the upper bound we will call the Zu.

Step 3: Back transform the confidence values to obtain the desired confidence interval for ρjk. This given by the expression below:
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The first term we see is a function of the lower bound, the Zl. The second term is a function of the upper bound or Zu.

Let's return to the Wechsler Adult Intelligence Data to see how these procedures are carried out.

Example: Wechsler Adult Intelligence Data 

Recall that the sample correlation between Similarities and Information was r12 = 0.7719.

Step 1: Compute the Fisher transform: 
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You should confirm this value on your own.

Step 2: Next, compute the 95% confidence interval for the Fisher transform, [image: image224.png]
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In other words, the value 1.025 plus or minus the critical value from the normal table, at α/2 = 0.025, which in this case is 1.96. Divide by the square root of n minus 3. Subtracting the result from 1.025 yields the lower bound of 0.68886. Adding the result to 1.025 yields the upper bound of 1.36114.

Step 3: Carry out the back-transform to obtain the 95% confidence interval for ρ12. This is shown in the expression below: 
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This yields the interval from 0.5972 to 0.8767.

Conclusion: In this case, we can conclude that we are 95% confident that the interval (0.5972, 0.8767) contains the correlation between Information and Similarities scores.

Note the correct interpretation of this interval. We did not say that we are 95% confident that the correlation between Information and Similarities lies between the interval. This would be an improper use of the English language. This statement would imply that the population correlation is random. But, in fact, by assumption, in this class, the population correlation is a fixed deterministic quantity. The only quantities that are random are the bounds of the confidence interval, which are a function of the random data and so are also random. Therefore it is appropriate to make statements regarding the randomness of that interval.

Summary

In this lesson we learned about: 

· The statistical properties of the sample mean vector, including its variance-covariance matrix and its distribution;

· The multivariate central limit theorem; which states that the sample mean vector will be approximately normally distribution;

· How to test the hypothesis that the population correlation between two variables is equal to zero, and how to draw conclusions regarding the results of that hypothesis test;

· How to compute confidence intervals for the correlation, and what conclusions can be drawn from such intervals. 

Lesson 7: Partial Correlation 

Introduction

Partial correlations are used to explore the relationships between pairs of variables after we take into account the values of other variables.. 

For example, in a study of the relationship between blood pressure and blood cholesterol, it might be thought that both of these variables may be related to age of the subject. That is, we might be interested in looking at the correlation between these two variables for subjects, all of whom are identical in age.

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Understand the definition of a partial correlation; 

· Compute partial correlations using SAS;

· Test the hypothesis that the partial correlation is equal zero, and draw appropriate conclusions from that test; 

· Compute and interpret confidence intervals for partial correlations.



Conditional Distributions

Before we define partial correlation we must first consider the conditional distributions of random variables.

If we have an n x 1 random vector Z we can partition it into two random vectors X and Y where X is an n1 x 1 vector and Y is an n2 x 1 vector as shown in the expression below:
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In our discussion of probability distributions we considered two cases, the case where variables are discrete and the case where variables are continuous. These two cases must also be considered when considering partial correlation.

1. Discrete Variables. This is the easier of the two cases. Here we will look to find the conditional probability that the random vector Y takes the value y is conditional on the random vector X takes the value x as shown in the expression below:
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Notationally the way we write this is the probability Y = y, the vertical bar represents the argument that we are conditioning on after the vertical bar, is that X = x. In shorthand we write this as p(y|x). By definition, this is equal to the joint probability of seeing both x and y divided by the probability of just seeing x. The long version of this follows last.

2. Continuous Variables. With continuous variables we must look at the probability density functions. In this case the conditional probability density function for Y given that X = x is given in the expression below: 
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Here we use the notation f for the probability density functions with y preceding x, separated by a vertical bar to denote this conditional probability density. Similar to the definition for the discrete variables, this is going to be equal to the joint probability density functions x and y in the numerator, divided by the marginal probability density in the denominator.



Conditional Means, Variances, and Covariances 

So far, we have only considered unconditional population means, variances, covariances, and correlations. These quantities are defined under the setting in which the subjects are sampled from the entire population. For example, blood pressure and cholesterol may be measured from a sample selected from the population of all adult citizens of the United States. 

To understand partial correlations, we must first consider conditional means, variances, and covariances. These quantities are defined for some subset of the population. For example, blood pressure and cholesterol may be measured from a sample of all 51 year old citizens of the United States. Thus, we may consider the population mean blood pressure of 51 year old citizens. This quantity is called the conditional mean blood pressure given that the subject is a 51 year old citizen. 

More than one condition may be applied. For example, we may consider the population mean blood pressure of 51 year old citizens who weigh 190 pounds. This quantity is the conditional mean blood pressure given that the subject is 51 years old and weighs 190 pounds.

Conditional Mean

Let Y denote a vector of variables (e.g., blood pressure, cholesterol, etc.) of interest, and let X denote a vector of variables on which we wish to condition (e.g., age, weight, etc.). Then the conditional mean of Y given that X equals a particular value x (i.e., X = x) is denoted by

μY.x = E(Y | X = x)

This is interpreted as the population mean of the vector Y given a sample from the subpopulation where X = x.

Conditional Variance

Let Y denote a variable of interest, and let X denote a vector of variables on which we wish to condition. Then the conditional variance of Y given that X = x is 

σ2Y.x = var(Y | X = x) = E{(Y - μY.x)2 | X = x}.

Since Y is random, so is (Y - μY.x)2 and hence (Y - μY.x)2 has a conditional mean. This can be interpreted as the variance of Y given a sample from the subpopulation where X = x.

Conditional Covariance

Let Yj and Yj denote two variables of interest, and let X denote a vector of variables on which we wish to condition. Then the conditional covariance between Yj and Yj given that X = x is

σi,j.x = cov (Yj, Yj | X = x) = E{(Yj - μYj)(Yk - μYk) | X = x}.

Since Yj and Yj are random, so is (Yj - μYj)(Yk - μYk) and hence (Yj - μYj)(Yk - μYk) has a conditional mean. This can be interpreted as the covariance between Yj and Yj given a sample from the subpopulation where X = x.

Just as the unconditional variances and covariances can be collected into a variance-covariance matrix Σ, the conditional variances and covariances can be collected into a conditional variance-covariance matrix:
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Partial Correlation

The partial correlation between Yj and Yj given X = x is:
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Note that this is computed in the same way as unconditional correlations, replacing unconditional variances and covariances with conditional variances and covariances. This can be interested as the correlation between Yj and Yj given a sample from the subpopulation where X = x.

The Multivariate Normal Distribution

Next, let us return to the multivariate normal distribution. Suppose that we have a random vector Z that is partitioned into components X and Y that is realized from a multivariate normal distribution with mean vector with corresponding components μX and μY, and variance-covariance matrix which has been partitioned into four parts as shown below:
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Here, ΣX is the variance-covariance matrix for the random vector X. ΣY is the variance-covariance matrix for the random vector Y. And, ΣXY contains the covariances between the elements of X and the corresponding elements of Y.

Then the conditional distribution of Y given that X takes a particular value x is also going to be a multivariate normal with conditional expectation as shown below:
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Note that this is equal to the mean of Y plus an adjustment. This adjustment involves the covariances between X and Y, the inverse of the variance-covariance matrix of X, and the difference between the value x and the mean for the random variable X. If little x is equal to μX then the conditional expectation of Y given that X is simply equal to the ordinary mean for Y.

In general, if there are positive covariances between the X's and Y's, then a value of X, greater than μX will result in a positive adjustment in the calculation of this conditional expectation. Conversely, if X is less than μX, then we will end up with a negative adjustment.

The conditional variance-covariance matrix of Y given that X = x is equal to the variance-covariance matrix for Y minus the term that involves the covariances between X and Y and the variance-covariance matrix for X. For now we will call this conditional variance-covariance matrix A as shown below:
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We are finally now ready to define the partial correlation between two variables Yj and Yk given that the random vector X = x. This is shown in the expression below:
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This is basically the same formula that we would have for the ordinary correlation, in this case calculated using the conditional variance-covariance matrix in place of the ordinary variance-covariance matrix. 

Partial correlations can be estimated by substituting in the sample variance-covariance matrixes for the population variance-covariance matrixes as shown in the expression below:
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where
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is the sample variance-covariance matrix of the data
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Then the elements of the estimated conditional variance-covariance matrix can be used to obtain the partial correlation as shown below:
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If we are just conditioning on a single variable we have a simpler expression available to us. So, if we are looking at the partial correlation between variables j and k, given that the ith variable takes the value of little yj, this calculation can be obtained by using the expression below. Therefore, the partial correlation between Yj and Yk given Yi = yj can be estimated by:
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Example: Wechsler Adult Intelligence Scale 

To illustrate these calculations we will return to the Wechsler Adult Intelligence Scale data.

This dataset includes data on n = 37 subjects taking the Wechsler Adult Intelligence Test. This test is broken up into four components: 

· Information 

· Similarities 

· Arithmetic

· Picture Completion 

Recall from the last lesson that the correlation between Information and Similarities was:

r = 0.77153 

The partial correlation between Information and Similarities given Arithmetic and Picture Completion may be computed using the SAS program wechsler2.sas shown below.
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wechsler2.lst gives the output from this program.

The output is in two tables. The first table gives the conditional variance-covariance matrix for Information and Similarities given Arithmetic and Picture Completion. The second table gives the partial correlation. Here we can see that the partial correlation is:

r = 0.71188 

Conclusion: Comparing this to the previous value for the ordinary correlation, we can see that the partial correlation is not much smaller than the ordinary correlation. This suggests that little of the relationship between Information and Similarities can be explained by performance on the Arithmetic and Picture Completion portions of the test. 

Interpretation: 

Partial correlations should be compared to the corresponding ordinary correlations. When interpreting partial correlations, three results can potentially occur. Each of these results yields a different interpretation.

1. Partial and ordinary correlations are approximately equal. This occurred in our present setting. This suggests that the relationship between the variables of interest cannot be explained by the remaining explanatory variables upon which we are conditioning.

2. Partial correlations closer to zero than ordinary correlations. Many times, this is the type of case that we are looking for. In this case, this would suggest that the relationship between the variables of interest might be explained by their common relationships to the explanatory variables upon which we are conditioning. For example, we might find the ordinary correlation between blood pressure and blood cholesterol might be a high, strong positive correlation. We could potentially find a very small partial correlation between these two variables, after we have taken into account the age of the subject. If this were the case, this might suggest that both variables are related to age, and the observed correlation is only due to their common relationship to age. 

3. Partial correlations farther from zero than ordinary correlations. This rarely happens. This situation would suggest that unless we take into account the explanatory variables upon which we are conditioning, the relationship between the variables of interest is hidden or masked.

Testing for Partial Correlation 

When discussing ordinary correlations we looked at tests for the null hypothesis that the ordinary correlation is equal to zero, against the alternative that it is not equal to zero. If that null hypothesis is rejected, then we look at confidence intervals for the ordinary correlation. Similar objectives can be considered for the partial correlation.

First consider testing the null hypothesis that a partial correlation is equal to zero against the alternative that it is not equal to zero. This is expressed below: 
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Here we will use a test statistic that is similar to the one we used for an ordinary correlation. This test statistic is shown below:
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The only difference between this and the previous one is what appears in the numerator of the radical. Before we just took n-2. Here we take n-2-k, where k is the number of variables upon which we are conditioning. In our Adult Intelligence data we conditioned on two variables so k would be equal to 2 in this case.

Under the null hypothesis this test statistic will be approximately t-distributed, also with n-2-k degrees of freedom. 

We would reject Ho if the absolute value of the test statistic exceeded the critical value from the t-table evaluated at α over 2:
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Example: Wechsler Adult Intelligence Data 

For the Wechsler Adult Intelligence Data we found a partial correlation of 0.711879, which we enter into the expression for the test statistic as shown below:
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The sample size is 37, along with the 2 variables upon which we are conditioning is also substituted in. Carry out the math and we get a test statistic of 5.82 as shown above.

Here we want to compare this value to a t-distribution with 33 degrees of freedom for an α = 0.01 level test. Therefore, we are going to look at the critical value for 0.005 in the table (since 33 does not appear use the closest df that does not exceed 33 which is 30) and in this case it is 2.75, meaning that t(df,1-α/2) = t(33,0.995) is 2.75. NOTE: Some text tables provide the right tail probability (the graph at the top will have the area in the right tail shaded in) while other texts will provide a table with the cumulative probability - the graph will be shaded in to the left. The concept is the same. For example, if alpha was 0.01 then using the first text you would look under 0.005 and in the second text look under 0.995.

Since 5.82 > 2.75 = t(33,0.005), we can reject the null hypothesis, Ho at the α = 0.01 level and conclude that there is a significant partial correlation between these two variables. In particular we would include that this partial correlation is positive indicating that even after taking into account Arithmetic and Picture Completion, there is a positive association between Information and Similarities.

Confidence Interval for the partial correlation - [image: image246.png]



The procedure here is very similar to the procedure we used for ordinary correlation. 

Step 1: Compute the Fisher’s transformation of the partial correlation using the same formula as before. 
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In this case, for a large n, this Fisher transform variable will be possibly normally distributed. The mean is equal to the Fisher transform for the population value for this partial correlation, and variance equal to 1 over n-2-k. 
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Step 2: Compute a (1 - α) x 100% confidence interval for the Fisher transform correlation. This expression is shown below:
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This yields the bounds Zl and Zu as before.
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Step 3: Back transform to obtain the desired confidence interval for the partial correlation - [image: image251.png]
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Worked Example: Wechsler Adult Intelligence Data 

The confidence interval is calculated substituting in the results from the Wechsler Adult Intelligence Data into the appropriate steps below:

Step 1: Compute the Fisher transform: 
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Step 2: Compute the 95% confidence interval for [image: image254.png]Lops:
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Step 3: Back-transform to obtain the 95% confidence interval for [image: image256.png]P12.34
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Based on this result we can conclude that we are 95% confident that the interval (0.50036, 0.84321) contains the partial correlation between Information and Similarities scores given scores on Arithmetic and Picture Completion.

Summary

In this lesson we learned about: 

· Conditional means, variances, and covariances;

· The definition of the partial correlation and how it may be estimated for data sampled from a multivariate normal distribution;

· Interpretation of the partial correlation;

· Methods for testing the null hypothesis that there is zero partial correlation; 

· How to compute confidence intervals for the partial correlation.

Lesson 8: Inferences About the Population Mean

Introduction

This lesson is about inferences for the population mean vector for a single population of subjects. Here we will return to the USDA Women’s Health Survey data.

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Use SAS to carry out Hotelling's T-square test for the null hypothesis that a population mean vector meets specifications; 

· Draw appropriate conclusions from the results of Hotelling's T-square test;

· Compute and interpret simultaneous and Bonferroni confidence intervals; 

· Understand which type of confidence intervals are most appropriate, simultaneous or Bonferroni; and

· Carry out and interpret the results of a profile analysis. 



Example: USDA Women’s Health Survey

As you might recall, in 1985, the USDA commissioned a study of women’s nutrition. Nutrient intake was measured for a random sample of 737 women aged 25-50 years. Five nutritional components were measured: calcium, iron protein, vitamin A and vitamin C. In our previous analyses of these data we calculated the sample population mean vector. These values are given the third column of the table below:

	Recommended

	Variable
	Intake (μo)
	Mean

	Calcium
	1000 mg
	624.0 mg

	Iron
	15mg
	11.1 mg

	Protein
	60g 
	65.8 g 

	Vitamin A 
	800 μg
	839.6 μg 

	Vitamin C
	75 mg
	78.9 mg


One of the questions we may which to ask of these data is whether the average woman meets the federal nutritional intake guidelines. These guidelines are given in the second column of the table above. If they fail to meet the guidelines, then we may wish to ask which nutrients the women fail to meet the guidelines.

The hypothesis we wish to take is that the average women meets nutritional standards for all nutritional components. This null hypothesis would be rejected if the average women fails to meet nutritional standards on any one or more of these nutritional variables. In mathematical notation, this null hypothesis is written as the population mean vector μ equals the hypothesized mean vector μo as shown below:

Ho : μ = μo
To develop this hypothesis testing we will compare the univariate case with the analogous multivariate case in the following tables.

Focus of Analysis

	Univariate Cases
	Multivariate Cases

	Measuring only a single nutritional component.

Data: scalar quantities X1,X2,.,Xn 
	Data: p × 1 random vectors 

X1, X2,...,Xn


Assumptions Made In Each Case

	Univariate Cases
	Multivariate Cases

	1. Distribution 

	The data all have a common mean μ ; mathematically, 

E(Xi) = μ; i = 1,2,...,n. 

The expected value of each observation is equal to μ for all observation 1 through n. Heuristically, this essentially means that we have a single population of subjects and no sub-populations with different means. This assumption might be violated, if for example, you are dealing with different socioeconomic groups with different means.
	The data have common mean vector μ ; i.e., 

E(Xi) = μ ; i = 1,2,.,n. 

This also implies that there are no sub-populations with different mean vectors.

	2. Homoskedasticity 

	The data have common variance σ2 ; mathematically, 

var(Xi) = σ2; i = 1,2,.,n. 

The variance of the ith observation is equal to σ2 for all i = 1 through n. This says that the variability of data does not depend on any characteristics of women of interest.
	The data for all subjects have common variance-covariance matrix Σ ;i.e.,

var(Xi) = Σ ; i = 1,2,.,n. 

Mathematically we write this as the variance-covariance matrix of the vector Xi is equal to Σ for all i = 1 through n.

	3. Independence 

	The subjects are independently sampled.

This assumption could be violated if one of three circumstances occur: 

1. The data are clustered, (for example taking data from samples of families and then sampling women in each family. You might expect that the women in the same family to be more similar to one another than women from different families. This would result in some correlation in the responses among women in the same family.)

2. The observations were collected over time, (here the data might be temporally correlated so that observations close together in time are going to be more similar to one another than observations far apart in time.

3. The subjects were sampled over space, (in this case, the data may be spatially correlated violating this assumption. Observations that are closer to one another may be more similar than observations that are further apart from one another spatially.
	The subjects are independently sampled. This is the same assumption that we made in the univariate setting.

	4. Normality 

	The subjects are sampled from a normal distribution
	The subjects are sampled from a multivariate normal distribution. 


Hypothesis Testing in Each Case

	Univariate Cases
	Multivariate Cases

	Consider hypothesis testing: 

Ho : μ = μo
We would typically test the null hypothesis that the mean μ is equal to a specific value μo. 

The alternative is that μ is not equal to the specified value μo. 

Ho : μ ≠ μo
	Consider hypothesis testing: 

Ho : μ = μo against Ha : μ ≠ μo;

Here our null hypothesis is that mean vector μ is equal to some specified vector μo. The alternative is that these two vectors are not equal.

We can also write this expression as shown below:
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Here we simply write out the population mean vector and its elements 1 through p, and the hypothesized vector alongside.

The alternative, again is that these two vectors are not equal.
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Another way of writing this null hypothesis is shown below:
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The alternative is that μj is not equal to μoj for at least one j.
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Univariate Statistics: t-test

In your introductory statistics course you would have learned that such a null a hypothesis can be tested using a t-statistic as shown in the expression below:
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Equal to the difference between the sample mean and the hypothesized value μo, divided by the standard error of the mean, (the square root of the sample variance divided by n).

under Ho this t-statistic is going to be t-distributed, with n-1 degrees of freedom. We would reject Ho at level α if the absolute value of the test statistic t is greater than the critical value from the t-table, evaluated at α divided by 2 as shown below:
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A Naive Approach

Given what you already know about statistics, one might come up the following naive approach for analyzing multivariate data: This might be to compute the t-test statistics for each individual variable; i.e.,
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Thus we could define tj, which would be the t-statistic for the jth variable as shown above. This is equal to the difference between the sample mean and the hypothesized value μo, divided by the standard error of the mean, (the square root of the sample variance divided by n).

We may then reject Ho : μ = μo if [image: image265.png]1| > th-1an



for at least one variable [image: image266.png]


. 

Problem

The basic problem with this naive approach is that it does not control for experiment-wise error rate. By definition, the experiment-wise error rate is the probability of rejecting at least one of the hypothesis tests [image: image267.png]


when all of the Ho’s are true. 

To understand the experiment-wise error rate suppose that the experimental variance-covariance matrix takes the diagonal form as shown below: 
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That is the variances for each variables are located on the diagonal of this matrix and there are zero covariances between the variables. If the data are multivariate normally distributed then this would mean that all of the variables are independently distributed. In this case, the experiment-wise error rate can be calculated using the calculations in the expression below:
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By definition, the experiment-wise error rate is equal to the probability that we reject Ho(j) for at least one j, given that Ho(j) is true for all j. We can also write this as 1 minus the probability that we fail to reject Ho(j) given that the null hypothesis is true for all j. Under independence, this is equal to 1 minus the product, counting from 1 to p of the probability that we fail to reject Ho(j) given that the null hypothesis is true for all j. 

Here, recall, the capital pi symbol means to multiply all of the probabilities as opposed to adding them as a summation symbol would imply. 

The probability of failing to reject Ho(j) when Ho(j) is true, is equal to 1 minus the probability of rejecting Ho(j) when Ho(j) is true. Using the naive rule for rejecting the null hypothesis above, the probability of rejecting Ho(j) when Ho(j) is true is equal to α. So here we have 1 minus the product of j = 1 to p times 1 - α, or in other words 1 - α raised to the power of p resulting in the final expression above. Which is just 1 - α over p. Unless p is equal to one, where we could see that this quantity will be strictly greater than α.

Consequence

The consequence here is that the naive approach yields a liberal test. That is, we will tend to reject the null hypothesis more often than we should.

Bonferroni Correction

One way we might consider fixing this is to use the Bonferroni Correction. Here, under the Bonferroni Correction we would reject the null hypothesis that mean vector μ is equal to our hypothesized mean vector μo at level α if, for at least one variable j, the absolute value of tj is greater than the critical value from the t-table with n-1 degrees of freedom evaluated at α divided by 2p for at least one variable j between 1 and p.

Note: For independent data, this yields an experiment-wise error rate of approximately α. For example, if we are looking at an α = 0.05, experiment-wise error rate is as shown in the table below for the various values of p. You can see that these are all close to the desired level of 0.05.

	p
	experiment-wise 
error rate

	2
	0.049375

	3
	0.049171

	4
	0.049070

	5
	0.049010

	10
	0.048890

	20
	0.048830

	50
	0.048794


The problem with the Bonferroni Correction, however, is that it assumes independence among the variables. In a multivariate setting, the assumption of independence between variables is likely to be violated.

Consequence
For correlated variables, the true experiment-wise error rate lies somewhere between the above level and α/p. The test may be too conservative, and so, there will be low power to detect the desired effects. 



Hotelling’s T2
The solution that we are going to take in this class is to look at Hotelling’s T2 as an alternative test statistic. 

To motivate Hotelling's T2, let's recall the test statistic under the univariate setting. This was equal to the difference between the sample mean and the mean vector µo divided by the standard error.
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Recall that under the null hypothesis is t-distributed with n-1 degrees of freedom. Now consider squaring this test statistic as shown below:
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This is the difference between the sample mean and the hypothesized value squared, all divided by sample sample variance divided by n as shown above. Rearranging the terms, we can write this as n times the residual difference the sample mean and the hypothesized value, times 1 divided by the sample variance, times the residual difference the sample mean and the hypothesized value.

If you square a t-distributed random variable with n-1 degrees of freedom you get an F-distributed random variable with 1 and n-1 degrees of freedom. So, t2 will be F-distributed 1, n-1 degrees of freedom under Ho : μ =μo. Now we could reject Ho at level α if t2 is greater than the critical value from the F-table with 1 and n-1 degrees of freedom, evaluated at level α.

[image: image272.png]2> Finla




Hotelling’s T-Square 

Using the last term in our expression for t2, we are now going to a write an expression for Hotelling's T2. Here we replace the difference between the sample mean and the μo, with the difference between the sample mean vector and the hypothesized mean vector μo. One divided by the sample variance is replaced by the inverse of the sample variance-covariance matrix S yielding the expression below:
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Notes

For large n, T2 is approximately chi-square distributed with p degrees of freedom. 

If we replace the sample variance-covariance matrix S by the population variance-covariance matrix Σ,
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then the resulting test is exactly chi-square distributed with p degrees of freedom.

For small samples, the chi-square approximation for T2 does not take into account variation due to estimating the sample variance-covariance matrix Σ.

Better results can be obtained from the transformation of the Hotelling T2 statistic using the expression below:
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Here we take T2 times sample size n minus the number of variables p divided by p time n minus 1.

Under null hypothesis, Ho : μ = μo, this will be F distributed with p and n-p degrees of freedom. And we would reject the null hypothesis, Ho, at level α if the test statistic F is greater than the critical value from the F-table with p and n-p degrees of freedom, evaluated at level α.
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To illustrate the Hotelling's T2 test we will return to the USDA Women’s Nutrition data.



Example: USDA Women’s Nutrition Data 

The Hotelling's T2 test may be calculated using the SAS program nutrient4.sas as shown below. The data are stored in the file nutrient.txt.
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title "Hotellings T2 - Uomen's Hutrition Data”;

Eldata mutrient;
infile "D:\Statistics\STAT S05\data\nutrient.txt”;
input 1d caleium iron protein a c:

Elproc inl;
start hotel;
m0=(1000, 15, 60, 800, 75);
one=3 (nrow(x),1,1)
tarou(x) ) ;
‘ybar=x " vone/nrow(x) ;
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prine s;
£2enrow (x) * (ybar-mu0) **inv(s) ¥ (ybar-muo) ;
(urow(x) -ncol (x) ) *£2/ncol (x) / (nrow(x) -1) ;
afLncol(x)
agzenrow (x) -ncol (x) ;
1-probe(f,drl,drz) ;
print €2 £ dfl 4f2 p;
finish;
use mutrient;
read all var(calciun iron protein a c} into x;
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It turns out that SAS does not have any procedures for calculating Hotelling's T2. So in this case we are going to have to rely on the iml procedure, which can carry out matrix manipulation. And in this case, it can be used for carrying out Hotelling's T2 test. 

	


	




To use this program, I recommend copying my program which I have given here and then just making the necessary changes to use it with your dataset on your homework assignment. Again, only three entries are all we really need to change to use this with any dataset. First the specified value of μo. Second, which dataset you want to use, and third, the specification of what variable you want to analyze.



The results are printed in the output nutrient4.lst.

At the top of the output we have the entries for the hypothesized values, μo and the sample mean vector ybar which appeared previously in this lesson and copied here:

	Recommended

	Variable
	Intake (μo)
	Mean

	Calcium
	1000 mg
	624.0 mg

	Iron
	15mg
	11.1 mg

	Protein
	60g 
	65.8 g 

	Vitamin A 
	800 μg
	839.6 μg 

	Vitamin C
	75 mg
	78.9 mg


This is followed by the sample variance-covariance matrix which I have copied from the output and also added here below:
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Hotelling’s T-square comes out to be:

T2 = 1758. 54 
The F-statistic is:
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For an 0.01 level test, the critical value is approximately 3.02. Since 349.80 is greater that this value, we can reject the null hypothesis that the average woman meets dietary intake recommendations.

(T2 = 1758.54; F = 349.80; d.f. = 5,732; p < 0.0001)

The SAS program computes the p-value to be about 0.00. p-values actually never really be able to equal zero so we can just simply state that the p-value is less than 0.0001.

What can we conclude here? 

Conclusion

The average woman between 25 and 50 years old does not meet recommended dietary intake standards. As evidence for this conclusion we can present the Hotelling's T2 statistic, 1758.54, the F-value of 349.8, the degrees of freedom, 5 and 732 , and finally the p-value of being less than 0.0001. 

Returning to the table of sample means and recommended dietary intake, the most striking features that we can see that appears that women fail to meet nutritional standards for calcium and iron. And perhaps the exceed intakes for protein, vitamin A and vitamin C.

	Recommended

	Variable
	Intake (μo)
	Mean

	Calcium
	1000 mg
	624.0 mg

	Iron
	15mg
	11.1 mg

	Protein
	60g 
	65.8 g 

	Vitamin A 
	800 μg
	839.6 μg 

	Vitamin C
	75 mg
	78.9 mg


Such a statement, however, is not entirely backed up by the evidence. So a question emerges...



A Question Emerges...

For which nutrients do women fall significantly below recommended nutritional intake levels? Or, conversely, for what nutrients do women fall significantly above recommended nutritional intake levels?

A naive approach to addressing this question is through the calculation of Confidence Intervals for each of the nutritional intake levels.

Here we can calculate one-at-a-time confidence intervals using the methods you learned in an introductory methods statistics course. For example, (1 - α) × 100% confidence intervals are defined to be equal the sample means plus or minus the critical value from the t-table (with n-1 degrees of freedom, evaluated at α over 2) multiplied by the standard error of the mean (square root of the sample variance for the jth variable divided by n). This expression is shown below:
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If we consider only a single variable, we can say with (1 - α) × 100% confidence that the interval includes its population mean.

Example: USDA Women’s Health Survey 

A one-at-a-time 95% confidence interval for calcium is given by the following where values are substituted into the formula and the calculations are worked out as shown below: 

[image: image284.png]624.04925 £ t7350025 /157829 47737
624.04925 = 1.96 x 14.63390424
624.04925 = 28.68245
(595.3668.652.7317)





The one-at-a-time confidence intervals are summarized in the table below: 

	Variable
	μo
	95% Confidence Interval

	Calcium
	1000 mg
	595.3, 652.8

	Iron
	15mg
	10.7, 11.6

	Protein
	60g 
	63.6, 68.0

	Vitamin A 
	800 μg
	721.5, 957.8

	Vitamin C
	75 mg
	73.6, 84.2


Looking at this table, it appears that the average woman falls below recommended daily intakes of calcium and iron (since the intervals fall below the recommended intakes of these variables), and exceeds the recommended daily intake of protein (since the interval falls above the recommended intake of protein). 

Problem: The problem with these one-at-a-time intervals is that they do not control for experiment-wise error rate.

Consequence: The consequence here is that we are less than 95% confident that all of the intervals simultaneously cover their respective means.

To fix this problem we can calculate a (1 - α) × 100% Confidence Ellipse for the population mean vector μ. To calculate this confidence ellipse we must recall that for independent random samples from a multivariate normal distribution with mean vector μ and variance-covariance matrix Σ, the F-statistic which we calculate before, (shown below), is going to be F-distributed with p and n-p degrees of freedom:

[image: image285.png](n-p)
2(—1)

F=nx-p'si(x-p) ~ Fpnyp




This next expression says that the probability that n times the squared Mahalanobis distance between the sample mean vector, xbar, and the population mean vector μ is less than or equal to p times n-1 times the critical value from the F-table divided by n-p is equal to 1 - α. 
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Here the squared Mahalanobis distance between xbar and μ is given by the quadratic form. xbar - μ transposed times the inverse of the sample variance-covariance matrix, times xbar minus μ. Note that by setting n times the squared Mahalanobis distance equal to p times n minus 1 times F, divided by n-p we obtain the equation for a hyper-ellipse:
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In particular, this is the (1 - α) × 100% confidence ellipse for the population mean, μ. 

Geometry

Next consider the geometry of the (1 - α) × 100% confidence ellipse. The geometry of this ellipse is very similar to the prediction ellipse that we discussed earlier in our discussion of the multivariate normal distribution. Here we will let

λ1 through λp 

denote the eigenvalues of the sample variance-covariance matrix S and let 

e1 through ep 

denote the corresponding eigenvectors. 
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Just as in the case in the prediction ellipse, the jth axis of the confidence ellipse points in the direction defined by the jth eigenvector ej. This axis will have a half-length lj equal to a function of the square root of the jth eigenvalue as shown below:
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This half-length involves the jth eigenvalue, the number of variables, p, the sample size, n, and the critical value from the F-table with p and n-p degrees of freedom. 

Note that a (1 - α) × 100% confidence ellipse yields simultaneous (1 - α) × 100% confidence intervals for all linear combinations of the variable means. Consider linear combinations defined as found in the expression below:
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This involves coefficients c1 through cp which pre-multiply by the corresponding population means μi. 

The simultaneous (1 - α) × 100% confidence intervals are given by the expression below and involve substituting in the sample means for the population means from which we add and subtract the product of two radical terms.
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The first term contains all but the eigenvalue that appears in the expression above. It involves the number of variables, p, the sample size, n, and the critical value from the F-table with p and n-p degrees of freedom. The second term is the standard error of the particular linear combination of the mean. 

Interpretation

In terms of interpreting the (1 - α) × 100% confidence ellipse, we can say that we are (1 - α) × 100% confident that all such confidence intervals cover their respective linear combinations of the treatment means, regardless of what linear combinations we may wish to consider. In particular, we can consider the trivial linear combinations which correspond to the individual variables. So this says that we going to be also (1 - α) × 100% confident that all of the intervals given in the expression below:
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cover their respective treatment population means. These intervals are given by the sample means plus or minus the same radical as given in the expression above including terms for the number of variables, p, the sample size, n, and the critical value from the F-table with p and n-p degrees of freedom. This radical is multiplied by the standard error of the mean which is given by the square root of the sample variance for that mean divided by n.

These intervals are called simultaneous confidence intervals. 

Example: USDA Women’s Health Survey 

Example hand calculations follow. For calcium, we substituted in the following values: The sample mean was 624.04925. We have p = 5 variables, a total sample size of n = 737, and if we look up in the F-table for 5 and 732 degrees of freedom for alpha = 0.05, the critical value is 2.21. The standard error of the sample mean for calcium is equal to the square root of the sample variance for calcium, 157,829.44, divided by the sample size, 737. The math is carried out and obtain an interval running from 575.27 to approximately 672.83 as shown below:
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These calculations may also be carried out using the SAS program nutrient5.sas.

[image: image294.png]options 1s=78;
title "Confidence Intervals - Uomen's Hutrition Data”;
slet p=s;

Eldata nutrient;
infile "D:\Statistics\STAT S05\data\nutrient.txt”;
input 1d caleium iron protein a c:
varisble="caloiun’; x=caloium; output;

varisbles'iron’;  x=irom;  output;
varisbles"protein’; x=protein; output;
varisbles"vit a;  x=a; output;
varisbles"vit o7;  x=c; output;
keep varisble x;

Elproc sort;
by varisble;

Elproc means noprint;
by varisble;
output outea nen meansxber var-s2:

Eldata b;
set a;

L025,n-1) ;
-025/6pn-1) 2
£=£inv(0.95,ap,0-60)
Loonesxbar-tlvsqre(sz/n) ;
uponesxbar+tlssqre(sz/n) ;
Losin=xbar-sqrt (p* (n-1] *£52/ (n-ep] /n] ;
upsinsxbar+sqre (6p* (n-1) *€752/ (n-ep) /n) ;
Lobon=xbar-tb¥sqre (s2/n) ;
upbon=xbar+thTSqre(s2/n) ;

Elproc print;




In terms of using this program there is only a couple of things you need to change, what you let p equal to in line five, and then what appears in the data step in the top of the page.

In terms of using the program with other datasets, basically what you need to do is create a separate line starting with variable for each variable that is included in the analysis. In this case we have five nutritional variables so we have five of these lines in the first data step. Then you set this equal to, in quotes, the name you wish to give that variable. After a semicolon we will set x = to the name that we specified for that variable in the input statement and finally after another semicolon we type in "output;".

The output is available in the file nutrient5.lst.

The output contains the sample means for each of the variables, gives the results of the calculations under data step "b".

Confidence intervals are given by the columns for "losim" and "upsim" and those entries have been copied into the table below. Make sure that you can find the numbers we have included from the output in the table below:

	Variable
	μo
	95% Confidence Interval

	Calcium
	1000 mg
	575.1, 673.0

	Iron
	15 mg
	10.4, 11.9

	Protein
	60 g 
	62.0, 69.6

	Vitamin A 
	800 μg
	638.3, 1040.9

	Vitamin C
	75 mg
	69.9, 88.0


Looking at these simultaneous confidence intervals we can see that the upper bound of the interval for calcium falls below the recommended daily intake of 1000 mg. Similarly, the upper bound for iron also falls below the recommended daily intake of 15 mg. Conversely, the lower bound for protein falls above the recommended daily intake of 60 g for protein. The intervals for both vitamin A and C both contain the recommended daily intake for these two vitamins.

Conclusion

Therefore, we can conclude that the average woman falls below the recommended daily intakes of calcium and iron, and exceeds the recommended daily intake of protein. 

Problem

The problem with the simultaneous confidence intervals is that if we are not interested in all possible linear combinations of variables or anything other than just looking at just looking at the means by themselves, then the simultaneous confidence interval may be too wide, and hence, too conservative. As an alternative to the simultaneous confidence intervals we can use the Bonferroni intervals.

Bonferroni Intervals 

The Bonferroni intervals as given in the expression below:
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Just as in the one-at-a-time intervals, we have the sample mean plus or minus the critical value from the t-table with n-1 degrees of freedom multiplied by the standard error of the mean. But here we are going to look at the critical value at a over two times the number of parameters, p. This critical value is then multiplied by the standard error of the mean, (the variance divided by n).

An example from the USDA Women’s Health Survey data will illustrate this calculation.

Example: USDA Women’s Health Survey 

Here, the 95% confidence interval for calcium under the Bonferroni correction is calculated out below:
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This worked calculation uses the values for the sample mean for calcium, 624.04925, the critical value from the t-table, with n-1 degrees of freedom, evaluated at alpha over 2 times p, (0.05 divided 2 times 5, or .005). This critical value turns out to be 2.576 from the t-table. The standard error is calculated by taking the square root of the sample variance, (157,829.44), divided by the sample size, 737.

Carrying out the math, the interval goes from 586.35 to 661.75.

These calculations can also obtained by using the SAS program nutrient5.sas. The calculations of the upper and lower Bonferroni intervals are given by "lobon" and "upbon" at the end of data step "b". They involve the calculations: 

lobon=xbar-tb*sqrt(s2/n);

upbon=xbar+tb*sqrt(s2/n);

The results in the output for "lobon" and "upbon" from nutrient5.lst have been copied over into the table below:

	Variable
	μo
	95% Confidence Interval

	Calcium
	1000 mg
	586.3, 661.8

	Iron
	15mg
	10.6, 11.7 

	Protein
	60g 
	62.9, 68.7

	Vitamin A 
	800 μg
	684.2, 995.0

	Vitamin C
	75 mg
	71.9, 85.9


When compared to the simultaneous intervals, we see that the Bonferroni intervals are narrower. However, in this case, the conclusions will be the sam. The confidence intervals for both vitamin A and C both cover their respective recommended daily intakes. Intervals for calcium and iron fall below the recommended intake, while the interval for protein falls above it. 

Conclusion

This suggests that the average woman falls below recommended daily intakes of calcium and iron, and exceeds recommended daily intake of protein. 

Profile Plots

Tables of simultaneous or Bonferroni confidence intervals are hard to interpret by just glancing at them. They require study to determine which intervals fall above the hypothesized mean, which intervals fall below the mean and which intervals cover the mean. A much better approach would be to draw a picture of the data. The type of picture that we are going to look at here is called a profile plot. Profile plots can also be used to visualize the results of a one-sample Hotelling’s T2 test, particularly, they can help us visualize the results of simultaneous or Bonferroni confidence intervals.

Procedure

A profile plot is obtained by using the following three step procedure:

Step 1: Standardize each of the observations by dividing them by their hypothesized means. So if we are looking at the ith observation of the jth variable, given by Xij, we are going to divide this by the hypothesized mean for jth variable μoj. We will call the result Zij as shown below:
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Step 2: Compute the sample mean for the Zij's to obtain sample means correspond to each of the variables j, 1 to p. These sample means [image: image298.png]


are then plotted against the variable j. 

Step 3: Plot either simultaneous or Bonferroni confidence bands for the population mean of the transformed variables, [image: image299.png]Mz




Simultaneous (1 - α) × 100% confidence bands are given by the usual formula, using the z's instead of the usual x's as shown below:
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The same substitutions are made for the Bonferroni (1 - α/2) × 100% confidence band formula:
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The profile plots can be computed using the SAS program nutrient6.sas.

[image: image302.png]options ls=78;
title "Profile Plot - Uomen's Hutrition Data”;

slet p=s;
Eldata nutrient;
infile "D:\Statistics\STAT S05\data\nutrient.txt”;

input 1d caleium iron protein a c:

varisble="caloiuu’; ratioscaleium/1000; output;

varisbles'iron’;  ravi output;
varisbles"protein’; ravi output;
varisbles"vit a”;  rati output;
varisbles"vit o7;  rati output;

keep varisble ratio;
Elproc sort;
by varisble;
Elproc means;
by varisble;
var ratio;
output out=a
Eldata b;
set a;
409 (0.95,ap,n-6p)
ratiosxbar; output;
ratiosxbar-sqrt(p* (n-1] *£52/ (n-ep) /n] ; output:
ratio=xbartsqrt (sp* (n-1] *£%52/ (n-ep) /n] ; output:
Elproc gplot;
axisl lengths
axis? length=6 in;
plot ratiosvarisble / vaxissaxisl haxi:
sywbol venone ishilot color=black:

neansxbar var=sz;
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Click the Plot Icon or the link to the right to see the results for the Profile Plot - Women's Nutrition Data. (new window)

From this plot it is immediately obvious what the results of analyses are. In this plot we can easily see that the confidence intervals for calcium and iron fall below 1 indicating that the average woman fails to meet the recommended daily intake for these two nutrients. The confidence interval falls above the value 1 indicating that the average woman exceeds the recommended daily intake for protein. While the confidence intervals for vitamin A and C both contain 1 showing no evidence against the hypothesis that they do not need the intake of these two vitamins.



Profile Analysis

Next, we shall consider Profile Analysis of the Women's Nutrition data. But before this, let's return to the original hypothesis of interest. In particular, let's consider the null hypothesis that the population mean vector μ indicates a specified mean vector μo, against the alternative hypothesis that the population mean vector μ is not equal to the specified μo.

Note: That testing the following null hypothesis
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is equivalent to testing this null hypothesis:
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To understand this further, consider the ratios between the population means of each variable divided by the hypothesized values μo. It turns out that our original null hypothesis is equivalent to testing the null hypothesis that all of these ratios are equal to 1. Against the alternative that at least one of these ratios in not equal to 1, (below):
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To see these, consider the SAS program nutrient7.sas.

[image: image309.png]options 1s=78;
title "Hotellings T2 - Uomen's Hutrition Data”;

Eldata mutrient;
infile "D:\Statistics\STAT S05\data\nutrient.txt”;
input 1d caleium iron protein a c:
calciun=calciun/1000;

Elproc inl;
start hotel;
m0=(1,1,1,1,1);

one=3 (nrow(x],1,1)
ident=i (nrow(x) ) ;
‘ybar=x " vone/nrow(x) ;

5=x°* (1dent-onevone  /nrow (x) | %/ (nrow (x] -1.0) ;
print mo ybar;
prine s;
£2enrow (x) * (ybar-mu0) **inv(s) ¥ (ybar-muo) ;
£= (nrow (x] -ncol (x) | *e2/ncol (x) / (nrow (x] -1 ;
afLncol(x)
agzenrow (x) -ncol (x) ;
pe1-probe (£, df1,aE2) ;
print €2 £ dfl 4f2 p;
finish;
use mutrient;
read all var(calciun iron protein a c} into x;
run hotel;





	


	




If you compare the results from the output to the results from nutrient4.sas, we can see that we have identical values for Hotelling's T2 statistic, F degrees of freedom and the p-value. Nothing has changed here.
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Instead of testing the null hypothesis for the ratios of the means over their hypothesized means are all equal to one, profile analysis involves testing the null hypothesis that all of these ratios just equal to one another, but not necessarily equal to 1.

Profile Analysis: After rejecting 
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we may wish to test
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Profile Analysis can be carried out using the following procedure.

Step 1: Compute the differences between the successive ratios. That is we take the ratio over the j + 1 over it's hypothesized mean and subtract this from the jth variable over it's hypothesized mean as shown below: 
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We call this ratio Dij for observation i.

Note that, testing the null hypothesis that all of the ratios are equal to one another 
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is equivalent to testing the null hypothesis that all the mean differences are going to be equal to 0.
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Step 2: Apply Hotelling’s T2 test to the data Dij to test null hypothesis that the mean of these differences is equal to 0.
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This is carried out using the SAS program nutrient8.sas as shown below:

[image: image319.png]options ls=78;
title "Profile Analysis - Uomen's Hutrition Data”;

Eldata mutrient;
Statistics\STAT S05\data\nutrient.txt”;
input 1d caleium iron protein a c:
calciun=calciun/1000;

ron/15;

provein/60;

infile

aiffl=iron-calciun;
aiffzeprotein-iron;
aiff3=a-protein;
aifra=c-a;

Elproc inl;
start hotel;
m0=(0,0,0,0;
one=3 (nrow(x],1,1)
1 (nrow (x) )
“*one /nrow(x) ;
** (ident-one*one " /urow(x) ) *x/ (nrow(x) -1.0) ;

print w0 yhar;
prine s;
£2enrow (x) * (ybar-mu0) **inv(s) ¥ (ybar-muo) ;
mrow () -nool (%) ) 762/nool (%) / (nrow ) -1) ;
afLncol(x)
agzenrow (x) -ncol (x) ;
-probe(f,dtl,arz) ;

print €2 £ dfl 4f2 p;
finish;
use mutrient;
read all var(diffl diffz diff3 diffd) into x;
run hotel;





	


	




The results, (nutrient8.lst), yield a Hotelling's T2 of 1,030.7953 and an F value of 256.64843, 4 and 733 degrees of freedom and a p-value very close to 0.
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Example: Women’s Nutrition Survey 

Here we can reject the null hypothesis for the reason that the ratio of mean intake over recommended intake is the same for each nutrients as the evidence has shown here:

(T2 = 1030.80; F = 256.65; d.f. = 4, 733; p < 0.0001)

This null hypothesis could be true if, for example, all the women were taking in nutrients in their required ratios, but they were either eating too little or eating too much.



Summary

In this lesson we learned about: 

· Experiment-wise error rates;

· How to use SAS to carry out the one-sample Hotelling's T-square test, compute confidence intervals, produce a profile plot, and carry out a profile analysis;

· How to interpret the results of Hotelling's T-square;

· How to interpret the simultaneous and Bonferroni confidence intervals.

In practice, the analysis of the data proceeds as follows:

Step 1: Carry out Hotelling's T-square test. If we fail to reject the null hypothesis that the population mean vector meets specifications, then we conclude that there is no statistically significant evidence that the data do not meet specifications, and we stop. If, however, we reject the null hypothesis, we conclude that at least one of the variables does not meet specifications, and we go on to Step 2.

Step 2: Decide if we wish to make statistical inferences about any linear combinations of the population means. If so, proceed to Step 2a. If not, proceed to Step 2b.

Step 2a: Compute simultaneous confidence intervals for the population means and the desired linear combinations. Such intervals can tell use what variables exceed specifications, and what variables fall below specifications. If desired, produce the profile plot to illustrate the results of the analyses.

Step 2b: Compute Bonferroni confidence intervals for the population means. Such intervals can tell use what variables exceed specifications, and what variables fall below specifications. If desired, produce the profile plot to illustrate the results of the analyses.

Step 3 (optional): Carry out a profile analysis.

Lesson 9: Paired Hotelling's T-Square

Introduction

This lesson is about the Paired Hotelling's T-square test. In an introductory statistics course you would have learned about different versions of the t-test, for instance, the one sample t-test, the paired t-test, and the two sample t-test. The one sample t-test tests the null hypothesis whether the population mean equals some specified value. The multivariate analog for that test is the one sample Hotelling's T2 which we just considered in the previous lesson.

The paired t-test involved paired samples. The observations are paired with one another. Just as the one sample Hotelling's T-square is a multivariate analog for a one sample t-test, the Paired Hotelling's T2 is the multivariate analog of the paired t-test.

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Use SAS to carry out the paired Hotelling's T-square test for the null hypothesis that two population mean vectors are equal;

· Draw appropriate conclusions from the results of the paired Hotelling's T-square test; 

· Compute and interpret simultaneous and Bonferroni confidence intervals.

Paired Samples

Paired Samples occur in a number of different situations. For example: 

· Pairs of similar individuals are selected from a population. Basically these are selected in such a way that the two members of each pair are more similar to one another than they are to different observations in the dataset. Under this setting, one treatment may be applied to a randomly selected member of each pair, while the other treatment is applied to the remaining member. 

· For a single sample of individuals, where measurements may be taken both before and after treatment. For example, the mineral content of six bones is measured before and after one year of diet and exercise treatments, as you will find in the homework assignment.

· Cat eye experiment: At the University of Georgia I came across this experiment as a part of my consulting activities. Here, the objective was to test the effect of a treatment for glaucoma. In this experiment, a treatment for glaucoma is applied to a randomly selected eye of each cat, while the remaining eye received a placebo. Many measurements were taken on each eye including pressure, dilation, etc.

The example that we are going to consider in this lesson involves spouse data. In this case we have husband and wife pairs.

Example: Spouse Data 

A sample of husband and wife pairs are asked to respond to each of the following questions: 

1. What is the level of passionate love you feel for your partner? 

2. What is the level of passionate love your partner feels for you? 

3. What is the level of companionate love you feel for your partner?

4. What is the level of companionate love your partner feels for you? 

A total of 30 married couples were questioned. Responses were recorded on the five-point scale. Responses included the following values:

1. None at all 

2. Very little 

3. Some 

4. A great deal 

5. Tremendous amount 

We will try to address two separate questions from these data.

1. Do the husbands respond to the questions in the same way as their wives? 

2. Do the husbands and wives accurately perceive the responses of their spouses? 

We shall address Question 1 first...



Question 1 - The Univariate Case

Do the husbands respond to the questions in the same way as their wives? 

Before considering the multivariate case let's review the univariate approach to answering this question. In this case we will compare the responses to a single question.

Univariate Paired t-test Case: Consider comparing the responses to a single question. 

Notation will be as follows: 

· X1i = response of husband i - the first member of the pair

· X2i = response of wife i - the paired responses for the ith couple

· μ1 = population mean for the husbands - the first population

· μ2 = population mean for the wives - the second population

Note that it is completely arbitrary which population is considered the first population and which is considered the second population. This choice is completely arbitrary. It is just necessary to keep track of which way they were labeled.

Our objective here is to test the null hypothesis that the population mean are equal against the alternative hypothesis that means are not equal, as described in the expression below:
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In the univariate course you should have learned that the null hypothesis will be tested as follows. First we define Yi to be the differences in responses between the ith pairs of observations. In this case, this will be the difference between husband i and wife i. Likewise we can also define μY to be the difference between the population means μ1 and μ2, both as noted below:
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Testing the null hypothesis for the equality of the population means is going to be equivalent to testing the null hypothesis that μY is equal to 0 against the general alternative that μY is not equal to 0.
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This hypothesis is tested using the paired t-test. 

We will define y-bar to be the sample mean of the Yi's:
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We will also define s2Y to be the sample variance of the Yi's: 
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We will make the usual four assumptions in doing this:

1. The Yi's have common mean μY
2. Homoskedasticity. The Yi's have common variance [image: image328.png]


. 

3. Independence. The Yi's are independently sampled.

4. Normality. The Yi's are normally distributed. 

The test statistic is a t-statistic which is, in this case, equal to the sample mean divided by the standard error as shown below:
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Under the null hypothesis, Ho this test statistic is going to be t-distributed with n-1 degrees of freedom and we will reject Ho at level α if the absolute value of the t-value exceeds the critical value from the t-distribution with n-1 degrees of freedom evaluated at α over 2.
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Multivariate Paired Hotelling's T2 Case

Now let's consider the multivariate case. In this case scalar observations will all be replaced by vectors of observations. As a result we will use the notation that follows.
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= vector of observations for the ith husband
	[image: image332.png]


= vector of observations for the ith wife

	X1i1 will denote the response of the ith husband to the first question. X1i2 will denote the response of the ith husband to the second question as so on...
	X2i1 will denote the response of the ith wife to the first question. X2i2 will denote the response of the ith with to the second question as so on...


The scalar population means are replaced by population mean vectors so that μ1 = population mean vector for husbands and μ2 = population mean vector for the wives.

Here we are interested in testing the null hypothesis that the population mean vectors are equal against the general alternative that these mean vectors are not equal.
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Under the null hypothesis the two mean vectors are equal element by element. As with the one-sample univariate case we are going to look at the differences between the observations. We will define the vector Yi for the ith couple to be equal to the vector X1i for the ith husband minus the vector X2i for the ith wife. Then we will also, likewise, define the vector μY to be the difference between the vector μ1 and the vector μ2.
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Testing the above null hypothesis is going to be equivalent to testing the null hypothesis that the population mean vector μY is equal to 0. That is, all of its elements are equal to 0. This is tested against the alternative that the vector μY is not equal to 0, that is at least one of the elements is not equal to 0.
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This hypothesis is tested using the paired Hotelling's T2 test. 

As before, we will define y-bar to denote the sample mean vector of the vectors Yi.
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And, we will define SY to denote the sample variance-covariance matrix of the vectors Yi.
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The assumptions are similar to the assumptions made for the one-sample Hotelling's T-square test: 

1. The vectors Yi's have common population mean vector μY, which essentially means that there are no sub-populations with mean vectors.

2. The vectors Yi's have common variance-covariance matrix ΣY. 

3. Independence. The Yi's are independently sampled. In this case, independence among the couples in this study.

4. Normality. The Yi's are multivariate normally distributed. 

Paired Hotelling's T-Square test statistic is given by the expression below: 
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It is a function of sample size n, the sample mean vectors, y-bar, and the inverse of the variance-covariance matrix SY.

Then we will define an F-statistic as given in the expression below:
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Under the null hypothesis, Ho : μY = 0, this will F-distributed with p and n-p degrees of freedom. We will reject Ho at level α if the F-value exceeds the value from F-value with p and n-p degrees of freedom, evaluated at level α.
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Let's return to our example...

Example: Spouse Data

The Spouse Data may be analyzed using the SAS program spouse.sas as shown below:

[image: image341.png]options ls=78;
title "Paired Hotelling's T-Square”;

Eldata spouse;
infile "D:\Statistics\STAT S05\data\spouse.txt”;
input hl h2 h3 hd vl 2 U3 d;
alehl-ul;
azehz-uz;
a3:h3-u3;
a4-ha-ua;

Elproc print;

Elproc inl;
start hotel;
mo=(0, 0, 0, 0};
one=3 (nrow(x],1,1)
ident=i (nrow(x) ) ;
‘ybar=x " vone/nrow(x) ;
5=x°* (1dent-onevone  /nrow (x) | %/ (nrow (x] -1.0) ;
print mo ybar;
prine s;
0w (x] * (ybar-mu0) **inv (s) ¥ (ybar-muo) ;
£= (nrow (x] -ncol (x) | *e2/ncol (x) / (nrow (x] -1 ;
afLncol(x)
agzenrow (x) -ncol (x) ;
pe1-probe (£, df1,aE2) ;
print €2 £ dfl 4f2 p;
finish;
use spouse;
read all var(dl d2 d3 d4) into x;
run hotel;





The first page of the output just gives a list of the raw data. You can see all of the data are numbers between 1 and 5. In fact if you look at them closely, you can see that they are mostly 4's and 5's, a few 3's. I don't think we see a 1 in there are all.

You can also see the columns for d1 through d4, and you should be able to confirm that they are indeed equal to the differences between the husbands and wives responses to the four questions.

The second page of the output gives the results of the iml procedure. First it gives the hypothesized values of the population mean under the null hypothesis. In this case, it is just a column of zeros. The sample means of the differences are given in the next column. So the mean of the differences between husband and wives response to the first question is 0.0666667. This is also copied into the table below. The differences for the next three questions follow.

Following the sample mean vector is the sample variance-covariance matrix. The diagonal elements give the sample variances for each of the questions. So, for example, the sample variance for the first question is 0.8229885, which we have rounded off to 0.8230 and copied into the table below as well. The second diagonal element gives the sample variance for second question, and so on.

The full sample variance-covariance matrix from the output of the SAS program spouse.sas:
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Sample means and variances of the differences in responses between the husbands and wives. 

	Question
	Mean [image: image343.png]



	Variance[image: image344.png](%)





	1
	0.0667
	0.8230

	2
	-0.1333
	0.8092

	3
	-0.3000
	0.5621

	4
	-0.1333
	0.6023


The results of the Hotelling's T-square statistic are given at the bottom of the output page. Here we have a test statistic, T2 = 13.13 approximately. The corresponding F-value of 2.94, with 4 and 26 degrees of freedom. The 4 corresponds with the number of questions asked, 4 questions asked of each couple. The 26 comes from subtracting the sample size of 30 couples minus the 4 questions, equaling 26. The p-value for the test is 0.039 approximately.

The results of our test are that we can reject the null hypothesis that the mean difference between and wife responses is equal to zero.

Conclusion: 

Our conclusion is that husbands do not respond to the questions in the same way as their wives. And this is supported by the evidence (T2 = 13.13; F = 2.94; d.f. = 4, 26; p = 0.0394). 

Basically what this means here is that they respond differently on at least one of the questions. It could be one question or more than one question. 

The next step is to assess on which question do the husband and wives differ in their responses. This step of the analysis will involve the computation of confidence intervals.

Confidence Intervals 

Confidence intervals for the Paired Hotelling's T-square are computed in the same way as for the one-sample Hotelling's T-square, therefore, the notes here will not be in quite as detailed as they were previously. But let's review the basic procedures:

Simultaneous (1 - α) × 100% Confidence Intervals for the mean differences are calculated using the expression below:
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Bonferroni (1 - α) × 100% Confidence Intervals for the mean differences are calculated using the following expression:
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As before, simultaneous intervals will be used if we are potentially interested in confidence intervals for linear combinations among the variables of the data. Bonferroni intervals should be used if we want to simply focus on the means for each of the individual variables themselves. In this case, the individual questions.

Example: Spouse Data

The simultaneous Bonferroni Confidence intervals may be computed using the SAS program spouse1a.sas as shown below:

[image: image347.png]options ls=78;
title "Confidence Intervals - Spouse Data”;
slet p=d;

Eldata spouse;

infile
input hl h2 h3 hd vl v2 U3 wd;
varisbles1; diff=hl-ul; output;
varisbles2; diff=hz-uz; output;
varisbles3; diff=h3-u3; output;
varisblesd; diff=hd-ud; output;
arop hl h2 h3 hd vl vZ U3 wd;

£\Statistics\STAT 505\ dataspouse. txt;

Elproc sort;
by varisble;

Elproc means noprint;
by varisble;
var dife;

output outea nen meansxber var-s2:

Eldata b;
set a;

inv(0.95,p,n-ep) 2
inv(1-0.025/6p,0-1)
Losinexbar-sqrt (p* (n-1] *£52/ (n-ep] /n] ;
psinsxbar+sqre (6p® (n-1) *€752/ (n-ep) /n) ;
Lobon=xbar-trsqre(s2/n) ;
upbon=xbar+tesqre(s2/n) ;

Elproc print;




Note that this SAS program is similar in format to nutrient5.sas which we considered earlier so I will go through this a little more quickly this time. 

The output is given in spouse1a.lst.

In this output losim and up sim give the lower and upper bounds for the simultaneous intervals, and lobon and upbon give the lower and upper bounds for the Bonferroni interval which are copied into the table below. You should be able to find where all of these numbers are obtained.

	95 % Confidence Intervals

	Question
	Simultaneous
	Bonferroni

	1
	-0.5127, 0.6460 
	-0.3744, 0.5078

	2
	-0.7078, 0.4412
	-0.5707, 0.3041

	3
	-0.7788, 0.1788
	-0.6645, 0.0645

	4
	-0.6290, 0.3623
	-0.5107, 0.2440


The simultaneous confidence intervals may be plotted using the SAS program spouse1.sas.


(Which in this case is analogous to the earlier SAS program nutrient6.sas.)

Note: The plot is given in plot1 shown below:
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Here we can immediately notice that all of the simultaneous confidence intervals include 0 suggesting that the husbands and wives do not differ significantly in their responses to any of the questions. So what is going on here? Earlier the Hotelling's T2 test told us that there was a significant difference between the husband and wives in their responses to the questions. But the plot of the confidence interval suggests that are no differences.

Basically, the significant Hotelling's T-square result is achieved through the contributions from all of the variables. It turns out that there is going to be a linear combination of the form:
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whose confidence interval will not include zero.

The profile plot suggests that the largest difference occurs in response to question 3. Here, the wives respond more positively than their husbands to the question: "What is the level of companionate love you feel for your partner?"

Question 2: Matching Perceptions 

Next we will return to the second question posed at the beginning of this lesson.

Do the husbands and wives accurately perceive the responses of their spouses? 

To understand this question, let us return to the four questions asked of each husband and wife pair. The questions were:

1. What is the level of passionate love you feel for your partner? 

2. What is the level of passionate love your partner feels for you?

3. What is the level of companionate love you feel for your partner?

4. What is the level of companionate love your partner feels for you? 

Notice that these questions are all paired. The odd numbered questions ask about how each person feel about their spouse, while the even numbered questions ask how each person thinks their spouse feels towards them. The question that we are investigating now asks about perception, so here we are trying to see if the husbands accurately perceive the responses of their wives and conversely to the wives accurately perceive the responses of their husbands.

In more detail, we may ask:

· Does the husband's answer to question 1 match the wife's answer to question 2. 

In this case we are asking if the wife accurately perceives the amount of passionate love her husband feels towards her.

· Secondly, does the wife's answer to question 1 match the wife's answer to question 2.

Here, we are asking if the husband accurately perceives the amount of passionate love his wife feels towards him.

· Similarly, does the husband's answer to question 3 match the wife's answer to question 4, and 

· Does the wife's answer to question 3 match the wife's answer to question 4.

To address the research question we need to define four new variables as follows: 

· Zi1 = X1i1 - X2i2 - (for the ith couple, the husbands response to question 1 minus the wives response to question 2.)

· Zi2 = X1i2 - X2i1 - (for the ith couple, the husbands response to question 2 minus the wives response to question 1.)

· Zi3 = X1i3 - X2i4 - (for the ith couple, the husbands response to question 3 minus the wives response to question 4.)

· Zi4 = X1i4 - X2i3 - (for the ith couple, the husbands response to question 4 minus the wives response to question 3.)

These Z's can then be collected into a vector. We can then calculate the sample mean for that vector...
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as well as the sample variance-covariance matrix...

[image: image351.png]> @i-7)Zi-7)
o




Here we will make the usual assumptions about the vector Zi containing the responses for the ith couple: 

1. The Zi's have common mean vector μZ 

2. The Zi's have common variance-covariance matrix ΣZ 

3. Independence. The Zi's are independently sampled. 

4. Multivariate Normality. The Zi's are multivariate normally distributed. 

Question 2 is equivalent to testing the null hypothesis that the mean μZ is equal to 0, against the alternative that μZ is not equal to 0 as expressed below:
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We may then carry out the Paired Hotelling's T-Square test using the usual formula with the sample mean vector z-bar replacing the mean vector y-bar from our previous example, and the sample variance-covariance matrix SZ replacing the inverse of the sample variance-covariance matrix SY also from our previous example: 
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We can then form the F-statistic as before:
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And, under Ho : μZ = 0 we will reject the null hypothesis Ho at level α if this F-statistic exceeds the critical value from the F-table with p and n-p degrees of freedom evaluate at α.
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The analysis may be carried out using the SAS program spouse2.sas as shown below:

[image: image356.png]options 1s=78;
title "Paired Hotelling's T-Square: Natching Perceptions”;

Eldata spouse;
infile "D:\Statistics\STAT S05\data\spouse.txt”;
input hl h2 h3 hd vl 2 U3 wd;
alehl-uz;
azehz-ul;
a3:h3-ud;
44-ha-u3;

Elproc print;

Elproc inl;
start hotel;
wan=(0, 0, 0, 0);
one=3 (nrow(x],1,1)
ident=i (nrow(x) ) ;
‘ybar=x " vone/nrow(x) ;
** (ident-one*one " /urow(x) ) *x/ (nrow(x) -1.0) ;
print w0 yhar;
prine s;
£2enrow (x) * (ybar-mu0) **inv(s) ¥ (ybar-muo) ;
mrow () -nool (%) ) 762/nool (%) / (nrow ) -1) ;

afLncol(x)
asz

0w (x] -ncol (x) ;
-probe(f,dtl,arz) ;

print €2 £ dfl 4f2 p;
finish;
use spouse;
read all var(dl d2 d3 d4) into x;
run hotel;





The SAS program hopefully resembles the program spouse.sas which used to address question #1. 

The output contains on its first page a printing of the data for each of the matrixes, including the transformations d1 through d4.

Page two contains the output from the iml procedure which carries out the Hotelling's T2 test. Again, we can see that mu0 is defined to be a vector of 0's. The sample mean vectors is given under YBAR.

S is our sample variance-covariance matrix for the Z's.

The Hotelling's T2 statistic comes out to be 6.43 approximately with a corresponding F of 1.44, with 4 and 26 degrees of freedom. The p-value is 0.24 which exceeds 0.05, therefore we do not reject the null hypothesis at the 0.05 level. 

Conclusion

In conclusion we can state now that here is no statistically significant evidence against the hypothesis that the husbands and wives accurately perceive the attitudes of their spouses. Our evidence includes the following statistics: ( T2 = 6.43; F = 1.44; d.f. = 4, 26; p = 0.249). 

Summary

In this lesson we learned about: 

· How to use SAS to carry out the paired Hotelling's T-square test, compute confidence intervals, produce a profile plot;

· How to interpret the results of the paired Hotelling's T-square; 

· How to interpret the simultaneous and Bonferroni confidence intervals.

Lesson 10: Two-Sample Hotelling's T-Square

Introduction

This lesson is concerned with the two sample Hotelling's T-Square test. This test is the multivariate analog of the two sample t-test in univariate statistics. These two sample tests, in both cases are used to compare two populations. Two populations may correspond to two different treatments within an experiment.

For example, in a completely randomized design, the two treatments are randomly assigned to the experimental units. Here, we would like to distinguish between the two treatments. Another situation occurs where the observations are taken from two distinct populations of a sample units. But in either case, there is no pairing of the observations as was in the case where the paired Hotelling's T-square was applied.

Example: Swiss Bank Notes 
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An example where we are sampling from two distinct populations occurs with 1000 franc Swiss Bank Notes.

1. The first population is the population of Genuine Bank Notes 

2. The second population is the population of Counterfeit Bank Notes 

While the diagram shows a more recent version issue of the 1000 franc note, it depicts the different measurement locations taken in this study. For both population of bank notes the following measurements were taken:

· Length of the note

· Width of the Left-Hand side of the note

· Width of the Right-Hand side of the note

· Width of the Bottom Margin

· Width of the Top Margin 

· Diagonal Length of Printed Area 

Objective: To determine if counterfeit notes can be distinguished from the genuine Swiss bank notes.

This is essential for the police if they wish to be able to use these kinds of measurements to determine if a bank notes are genuine or not and help solve counterfeiting crimes.

Before considering the multivariate case, we will first consider the univariate case...

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Use SAS to carry out two-sample Hotelling's T-square tests for the null hypothesis that a population mean vector meets specifications; 

· Draw appropriate conclusions from the results of Hotelling's T-square test;

· Compute and interpret simultaneous and Bonferroni confidence intervals for differences in the population means between the two populations;

· Carry out appropriate diagnostic procedures for the assumptions underlying the two-sample Hotelling's T-square test , and

· Carry out and interpret the results of a profile analysis.



The Univariate Case 

Suppose we have data from a single variable from two populations:

The data will be denoted in Population 1 as: X11,X12,...,X1n1 

The data will be denoted in Population 2 as: X21,X22,...,X2n2 

For both populations the first subscript will denote which population the note is from. The second subscript will denote which observation we are looking at from each population.

Here we will make the standard assumptions: 

1. The data from population i is sampled from a population with mean μi. This assumption simply means that there are no sub-populations to note.

2. Homoskedasticity: The data from both populations have common variance σ2 

3. Independence: The subjects from both populations are independently sampled. 

4. Normality: The data from both populations are normally distributed. 

Here we are going to consider testing, [image: image357.png]H, : py = py against Ho iy # 1o



, that both populations have have equal population means, against the alternative hypothesis that the means are not equal.

We shall define the sample means for each population using the following expression:
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We will let s2i denote the sample variance for the ith population, again calculating this using the usual formula below:
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Assuming homoskedasticity, both of these sample variances, s21 and s22, are both estimates of the common variance σ2. A better estimate can be obtained, however, by pooling these two different estimates yielding the pooled variance as given in the expression below:
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Here each sample variance is given a weight equal to the sample size less 1 so that the pool variance is simply equal to n1 - 1 times the variance of the first population plus n2 - 1 times the variance of the second population, divided by the total sample size minus 2.

Our test statistic is the students' t-statistic which is calculated by dividing the difference in the sample means by the standard error of that difference. Here the standard error of that difference is given by the square root of the pooled variance times the sum of the inverses of the sample sizes as shown below:
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under the null hypothesis, Ho of the equality of the population means, this test statistic will be t-distributed with n1 + n2 - 2 degrees of freedom. 

We will reject Ho at level α if the absolute value of this test statistic exceeds the critical value from the t-table with n1 + n2 - 2 degrees of freedom evaluated at α over 2..
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All of this should be familiar to you from your introductory statistics course.

Next, let's consider the multivariate case...



The Multivariate Case

In this case we are replacing the random variables Xij, for the jth sample for the ith population, with random vectors Xij, for the jth sample for the ith population. These vectors contain the observations from the p variable. 

In our notation, we will have our two populations: 

The data will be denoted in Population 1 as: X11, X12, ..., X1n1 

The data will be denoted in Population 2 as: X21, X22, ..., X2n2 

Here the vector Xij represents all of the data for all of the variables for sample unit j, for population i.
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This vector contains elements Xijk where k runs from 1 to p, for p different variables that we are observing. So, Xijk is the observation for variable k of subject j from population i.

The assumptions here will be analogous to the assumptions in the univariate setting.

Assumptions: 

1. The data from population i is sampled from a population with mean vector μi. Again, corresponding to the assumption that there are no sub-populations.

2. Instead of assuming Homoskedasticity, we now assume that the data from both populations have common variance-covariance matrix Σ.

3. Independence. The subjects from both populations are independently sampled. 

4. Normality. Both populations are normally distributed. 

Consider testing the null hypothesis that the two populations have identical population mean vectors. This is represented below as well as the general alternative that the mean vectors are not equal.
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So here what we are testing is:
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Or, in other words...
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The null hypothesis is satisfied only if the population means are identical for all of the variables.

The alternative is that at least one pair of these means is different. This is expressed below:
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To carry out the test, for each population i, we will define the sample mean vectors, calculated the same way as before, using data only from the ith population.
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Similarly, using data only from the ith population, we will define the sample variance-covariance matrices:
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Under our assumption of homogeneous variance-covariance matrices, both S1 and S2 are estimators for the common variance-covariance matrix Σ. A better estimate can be obtained by pooling the two estimates using the expression below:
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Again, the sample variance-covariance matrix is weighted by the sample sizes plus 1. 



The Two-Sample Hotelling's T-Square Test Statistic

Now we are ready to define the Two-sample Hotelling's T-Square test statistic. As in the expression below you will note that it involves the computation of differences in the sample mean vectors. It also involves a calculation of the pooled variance-covariance matrix multiplied by the sum of the inverses of the sample size. The resulting matrix is then inverted.
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For large samples, this test statistic will be approximately chi-square distributed with p degrees of freedom. However, as before this approximation does not take into account the variation due to estimating the variance-covariance matrix. So, as before, we will look at transforming this Hotelling's T-square statistic into an F-statistic using the following expression. Note that this is a function of the sample sizes of the two populations and the number of variables measured, p. 
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Under the null hypothesis, Ho : μ1 = μ2 this F-statistic will be F-distributed with p and n1 + n2 - p degrees of freedom. We would reject Ho at level α if it exceeds the critical value from the F-table evaluated at α.
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Example: Swiss Bank Notes 

The two sample Hotelling's T2 test can be carried out using the Swiss Bank Notes data using the SAS program swiss10.sas as shown below:

[image: image374.png]options 1s=78;
title "2-Sample Hotellings T2 - Suiss Bank Notes”:

Eldata suiss;
infile "D:\Statistics\STAT S05\data\suiss3.txt”;
input type § length left right bottom top diag:

Elproc ml,
start hotel2;

onel=j(nl,1,1]:
n2,1,1);

()

2}

yharl=x1 vonel/nl;

sLxL'* (identl-onelvonel /nl] #x1/ (nl-1.0) ;

print nl ybarl;

prine s1;

yharz=x2"vonez/nz;

52ex2°* (1dent2-onezvone2" /n2) %2/ (n2-1.0) ;

print nz ybarz;

prine s2;

Spool=( (nl-1.0) *sL+(n2-1.0)¥s2) / (nl-+n2-2.0) ;

prine spool;

2= (ybarl-ybarz) **inv(spool® (1/nl+1/n2) | ¥ (ybarl-ybarz) ;
nl4nz-k-1)7t2/k/ (nl4n2-2) ;

asL
asz

-probe (f,dfl,dsz) ;
print €2 £ dfl 4f2 p;

finish;
read all var(length left right botton top diag) vhere (type='real”] into xl;
read all var(length left right botton top diag) vhere (type="fake"] into x2;

run hotel2;





	


	




The output is given here in swiss10.lst. 

The top of the first output page you see that N1 is equal to 100 indicating that we have 100 bank notes in the first sample. In this case 100 real or genuine notes.

This is then followed by the sample mean vector for this population of genuine notes. The sample mean vectors are copied into the table below:

	
	Means

	Variable
	Genuine
	Counterfeit

	Length
	214.969
	214.823 

	Left Width 
	129.943
	130.300

	Right Width
	129.720 
	130.193

	Bottom Margin
	8.305
	10.530

	Top Margin
	10.168
	11.133

	Diagonal
	141.517
	139.450


Below this appears elements of the sample variance-covariance matrix for this first sample of notes, that is for the real or genuine notes. Those numbers are also copied into matrix that appears below: 
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Sample variance-covariance matrix for genuine notes: 

The next item listed on the output we have the information for the second sample. First appears the sample mean vector for the second population of counterfeit bank notes. These results are copied into the table above.

The sample variance-covariance for the second sample of notes, the counterfeit note, is given under S2 in the output and also copied below:
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Sample variance-covariance matrix for the counterfeit notes:

This is followed by the pooled variance-covariance matrix for the two sample of notes. For example, the pooled variance for the length is about 0.137. The pooled variance for the left-hand width is about 0.099. The pooled covariance between length and left-hand width is 0.045. You should be able to see where all of these numbers appear in the output. These results are also copied from the output and placed below:
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The two-sample Hotelling's T2 statistic is 2412.45. The F-value is about 391.92 with 6 and 193 degrees of freedom. The 6 is equal to the number of variables being measured and the 193 comes from the fact that we have 100 notes in each sample for a total of 200. We subtract the number of variables and get 194, and then subtract 1 more to get 193. In this case the p-value is close to 0, here we will write this as 0.0001.

In this case we can reject the null hypothesis that the mean vector for the counterfeit notes equals the mean vector for the genuine notes giving the evidence as usual: (T2 = 2412.45; F = 391.92; d. f. = 6, 193; p < 0.0001)

Conclusion

Our conclusion here is that the counterfeit notes can be distinguished from the genuine notes on at least one of the measurements.

After concluding that the counterfeit notes can be distinguished from the genuine notes the next step in our analysis is to determine upon which variables they are different?!



Upon Which Variable do the Notes Differ?

All we can conclude at this point is that the two types of notes differ on at least one variable. It could be just one variable, or a combination of more than one variable. Or, potentially, all of the variables.

To assess which variable these notes differ on we will consider the (1 - α) × 100% Confidence Ellipse for the difference in the population mean vectors for the two population of bank notes, μ1 - μ2. This ellipse is given by the expression below: 
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On the left hand of the expression we have a function of the differences between the sample mean vectors for the two populations and the pooled variance-covariance matrix Sp, as well as the two sample sizes n1 and n2. On the right hand side of the equation we have a function of the number of variables, p, the sample sizes n1 and n2, and the critical value from the F-table with p and n1 + n2 - p - 1 degrees of freedom, evaluated at α.

To understand the geometry of this ellipse, let λ1 through λp, below:
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denote the eigenvalues of the pooled variance-covariance matrix Sp, and let 

e1, e2, ..., ep 

denote the corresponding eigenvectors. Then the kth axis of this p dimensional ellipse points in the direction specified by the kth eigenvector, ek. And, it has a half-length given by the expression below:
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Note, again, that this is a function of the number of variables, p, the sample sizes n1 and n2, and the the critical value from the F-table.
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The (1 - α) × 100% confidence ellipse yields simultaneous (1 - α) × 100% confidence intervals for all linear combinations of the form given in the expression below:
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So, these are all linear combinations of the differences in the sample means between the two populations variable where we are taking linear combinations across variables. This is expressed in three terms in long hand from the far left hand side of this expression above, simplified using a summation sign in the middle term, and finally in vector notation in the final term to the right.

These simultaneous confidence intervals are given by the expression below:
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This involves the same linear combinations of the differences in the sample mean vectors between the two populations, plus or minus the first radical term which contains a function of the sample sizes and the number variables times the critical value from the F-table. The second radical term is the standard error of this particular linear combination.

Here, the terms [image: image386.png]


denote the pooled covariances between variables k and l. 

Interpretation

The interpretation of these confidence intervals is the same as that for the one sample Hotelling's T-square. Here, we are (1 - α) × 100% confident that all of these intervals cover their respective linear combinations of the differences between the means of the two populations. In particular, we are also (1 - α) × 100% confident that all of the intervals of the individual variables also cover their respective differences between the population means. For the individual variables, if we are looking at, say, the kth individual variable, then we have the difference between the sample means for that variable, k, plus or minus the same radical term that we had in the expression previously, times the standard error of that difference between the sample means for the kth variable. The latter involves the inverses of the sample sizes and the pooled variance for variable k.
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So, here, [image: image388.png]


is the pooled variance for variable k. These intervals are called simultaneous confidence intervals.

Let's work through an example of their calculation using the Swiss Bank Notes data...



Example: Swiss Bank Notes 

An example of the calculation of simultaneous confidence intervals using the Swiss Bank Notes data is given in the expression below:
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rollover for where these numbers come from here
Here we note that the sample sizes are both equal to 100, n = n1 = n1 = 100, so there is going to be simplification of our formula inside the radicals as shown above.

The sample mean for the length of the genuine notes was 214.969, and the sample mean for the length of the counterfeit notes was 214.823. Taking the difference, we obtain 0.146. We then add and subtract the radical term. Here p is equal to 6 and n is equal to 100 for each set of bank notes. The critical value from the F-table, with in this case, 6 and 193 degrees of freedom was 2.14. The standard error of the difference in these sample means is given by the second radical where we have 2 times the pooled variance for the length, which was 0.137, looking at the variance covariance matrix, and n again is 100.

Carrying out the math we end up with an interval that runs from -0.044 to 0.336 as shown above.

The SAS program swiss11.sas , below, can be used to compute the simultaneous confidence intervals for the 6 variables. 




	


	




The results are listed in swiss11.lst are shown below:
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The bounds of the simultaneous confidence intervals are given in columns for losim and upsim. Those entries are copied into the table below:

	Variable
	95% Confidence Interval

	Length
	-0.044, 0.336

	Left Width 
	-0.519, -0.195

	Right Width
	-0.642, -0.304

	Bottom Margin
	-2.698, -1.752

	Top Margin
	-1.295, -0.635

	Diagonal
	1.807, 2.327


You need to be careful where they appear in the table in the output. Note that the variables are now sorted in alphabetic order! For example, length would be the fourth line of the output data. In any case you should be able to find the numbers for the lower and upper bound of the simultaneous confidence intervals from the SAS output and see where they appear in the table above. The interval for length, for example, can then be seen to be -0.044 to 0.336 as was obtained from the hand calculations previously.

When interpreting these intervals we need to see which intervals include 0, which ones fall entirely below 0, and which ones fall entirely above 0.

The first thing that we notice is that interval for length includes 0. This suggests that we can not distinguish between the lengths of the counterfeit and genuine bank notes. The intervals for both width measurements fall below 0.

Since these intervals are being calculated by taking the genuine notes minus the counterfeit notes this would suggest that the counterfeit notes are larger on these variables and we can conclude that the left and right margins of the counterfeit notes are wider than the genuine notes.

Similarly we can conclude that the top and bottom margins of the counterfeit are also too large. Note, however, that the interval for the diagonal measurements fall entirely above 0. This suggests that the diagonal measurements of the counterfeit notes are smaller than that of the genuine notes.

Conclusions: 

· Counterfeit notes are too wide on both the left and right margins. 

· The top and bottom margins of the counterfeit notes are too large.

· The diagonal measurement of the counterfeit notes is smaller than that of the genuine notes. 

· Cannot distinguish between the lengths of the counterfeit and genuine bank notes. 



Profile Plots 

Simultaneous confidence intervals may be plotted using swiss12.sas as shown below:
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In this plot the differences between the sample means are plotted on the Y-axis against the variables on the X-axis. The simultaneous confidence intervals are also depicted in this plot. So, it is easy to see how the two sets of bank notes differ. It is immediately obvious that the intervals for length includes 0, and that the intervals for bottom, left, right and top are all below 0, while the interval for diagonal measurements falls above 0.

Since we are taking the genuine minus the counterfeit notes, this would suggest that both the left and right margins of the counterfeit notes are larger than those of the genuine notes. The bottom and top margins are also larger for the counterfeit notes than they are for the genuine notes. Finally, the diagonal measurements are smaller for the counterfeit notes than for the genuine notes.



Bonferroni Corrected (1 - α) x 100% Confidence Intervals

As in the one-sample case, the simultaneous confidence intervals should be computed only when we are interested in linear combinations of the variables. If the only thing that of interest, however, is the confidence intervals for the individual variables with no linear combinations, then a better approach is to calculate the Bonferroni corrected confidence intervals which are given in the expression below:
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These, again, involve the difference in the sample means for each of the variables, plus or minus the critical value from the t-table times the standard error of the difference in these sample means. The t-table is evaluated from a t-distribution with n1 + n2 - 2 degrees of freedom, evaluated at a divided by 2p where p is the number of variables to be analyzed. The radical term gives the standard error of the difference in the sample mean and involves the pooled variance for the kth variable times the sum of the inverses of the sample sizes.

For length of the bank notes that expression can be simplified to the expression that follows since the sample sizes are identical. The average length of the genuine notes was 214.959 from which we subtract the average length from the counterfeit notes, 214.823. (Glenn: provide links to where these sample means and the pooled variance 0.137 below can be found.) As for the t-table, we will be looking it up for 2 times the sample size minus 2 or 198 degrees of freedom at the critical value for 0.05 divided by 2 times the number of variables, 6, or 0.05/12. The critical value turns out to be about 2.665. The standard error is obtained by taking 2 times the pooled variance, 0.137 divided by 100. Carrying out the math we end up with an interval that runs from 0.006 to 0.286 as shown below:
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These calculations can also be obtained from the SAS program swiss11.sas as shown below:

[image: image400.png]options 1s=78;
title "Confidence Intervals - Suiss Bank Hotes”;
slet p=6;
Sdata sviss;
infile "D:\Statistics\STAT S05\data\suiss3.txt”;
input type § length left right bottom top diag:

Sdata real;
set swiss:
it type
variabl; ength; output;
varisble="left’; output;
varisble="right”; output:
varisble="botton; + outpur;
varisble="top"; output:
varisble="diagonal”; output:
keep type varisble x;

Sproc sort;
by varisble;

Elproc means noprint;
by varisble;
1d type;
output out=popl nenl

Sdata fake;
set suiss;
if types"rake”:
varisbles"length’;  x=length; output;

varisble="left’; output;
varisble="right”; output:
varisble="botton; + outpur;
varishle="top”. output:
varisble="diagonal”; output:
keep type varisble x;

Sproc sort;
by varisble;

Elproc means noprint;
by varisble;
1d type;
output out-pop2 nen2 mean-xbar2 va:

Sldata coubine;
nerge popl pop2;
by varisble;
£=£inv(0.95,ap,nl4n2-ep-1) ;
t=tiny(1-0.025/ep,n1m2-2) ;
(nl-1)*s21+(n2-1) %522} / (nl+n2-2) ;
Losinexbarl-xbar2-sqrt (ap* (nl+n2-2) *E¥ (1/1+1/n2) *sp/ (nln2-ap-1] ) ;
Darl-XBArZ+sqrt{ep (ML4nZ-2) SE7 (1/nl41/02) *op/ (nl4nz-6p-1))
barl-xbarz-tisqre( (1/nl+1/n2) *sp) ;
barl-xbarz+tssqrel (1/nl+1/n2) *sp) ;

Sproc print;







Looking at the datastep combine and moving down, we can see that under data combine the fourth line sets t=tinv. This calculates the critical value from the t-table as desired. Then the lower and upper bounds for the Bonferroni intervals are calculated under lobon and upbon at the bottom of this datastep.

The output as given in swiss11.lst, places the results in the columns for lobon and upbon. 

Again, make sure you note that the variables are given in alphabetical order rather than in the original order of the data. In any case, you should be able to see where the numbers appearing in the SAS output appear in the table below:

In summary, we have: 

	Variable
	95% Confidence Interval

	Length
	0.006, 0.286

	Left Width 
	-0.475, -0.239

	Right Width
	-0.597, -0.349

	Bottom Margin
	-2.572, -1.878

	Top Margin
	-1.207, -0.723

	Diagonal
	1.876, 2.258


The intervals are interpreted in a way similar as before. Here we can see that:

Conclusions

· Length: Genuine notes are longer than counterfeit notes.

· Left-width and Right-width: Counterfeit notes are too wide on both the left and right margins. 

· Top and Bottom margins: Counterfeit notes are too large.

· Diagonal measurement: The counterfeit notes is smaller than that of the genuine notes. 



Profile Plots

Profile plots provide another useful graphical summary of the data. These are only meaningful if all variables have the same units of measurement. They are not meaningful if the the variables have different units of measurement. For example, some variables may be measured in grams while other variables are measured in centimeters. In this case profile plots should not be constructed.

· In the traditional profile plot, the samples means for each group are plotted against the variables. 

Plot 1 shows the profile plot for the swiss bank notes data. In this plot we can see that we have the variables listed on the x-axis and the means for each of the variables is given on the y-axis. The variable means for the fake notes are given by the circle, while the variable means for the real notes are given by the squares. These data points are then connected by straight line segments.
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This plot was obtained by the swiss13a.sas as shown below:

[image: image403.png]options ls=78;
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Looking at our plot, we note that the two population of the bank notes are plotted right on top of one another, so this plot is not particularly useful in this particular example. This is not very informative for the Swiss bank notes, since the variation among the variable means far exceeds the variation between the group means within a given variable.

· A better plot is obtained by subtracting off the government specifications before carrying out the analyses.

This plot can be obtained by the swiss13b.sas as shown below:
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Comparing the two programs we notice only one difference between the programs. If you look in the data step where the values for the variable x is specified, in each case we are going to subtract off the government specifications. So, for length we are subtracting off the government specification of 215. In left and right we subtract off 130, and so on.

The results can be found in Plot 2 as shown below:
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From this plot we can see that the bottom and top margins of the counterfeit notes are larger than the corresponding mean for the genuine notes. Likewise, the left and right margins are also wider for the counterfeit notes than the genuine notes. However, the diagonal and length measurement for the counterfeit notes appear to be smaller than the genuine notes. Please note, however, this plot does not show which results are significant. Significance would be obtained from the previous simultaneous or Bonferroni confidence intervals.

One of the things that we look for in these plots is to see if the line segments joining the dots are parallel to one another. In this case, they do not appear to be even close to being parallel for any pair of variables.

Profile Analysis

Profile Analysis is used to test the null hypothesis that these line segments are indeed parallel. If the variables have the same units of measurement, it may be appropriate to test this hypothesis that the line segments in the profile plot are parallel to one another. They might be expected to be parallel in the case where all of the measurements for the counterfeit notes were consistently some constant larger than the measurements for the genuine notes.

To test this null hypothesis we use the following procedure:

Step 1: For each group, we create a new random vector Yij corresponding to the jth observation from population i. The elements in this vector are the differences between the values of the successive variables as shown below:
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Step 2: Apply the two-sample Hotelling's T-square to the data Yij to test the null hypothesis that the means of the Yij's for population 1 and the same as the means of the Yij's for population 2. In shorthand this reads as follows:
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Testing for Parallel Profiles

The test for parallel profiles may be carried out using the SAS program swiss14.sas as shown below:




	


	




The results, (swiss14.lst), yield the Hotelling T2 of 2356.38 with a corresponding F-value of 461.76. Since there are 5 differences we will have 5 degrees of freedom for the numerator and the denominator degrees of freedom is equal to the total number of observations of 200, (100 of each type), minus 5 - 1, or 194. The p-value is very close to 0 indicating that we can reject the null hypothesis.

Conclusion: We reject the null hypothesis of parallel profiles between genuine and counterfeit notes (T2 = 2356.38; F = 461.76; d.f. = 5, 194; p < 0. 0001). 



Model Assumptions and Diagnostics Assumptions

In carrying out any statistical analysis it is always important to consider the assumptions under which that analysis was carried out, and to assess which of those assumptions may be satisfied for this data.

Let's recall the four assumptions underlying the Hotelling's T-square test.

1. The data from population i is sampled from a population with mean vector μi. 

2. The data from both populations have common variance-covariance matrix Σ
3. Independence. The subjects from both populations are independently sampled. (Note that this does not mean that the variables are independent of one another.)

4. Normality. Both populations are multivariate normally distributed. 

The following will consider each of these assumptions separately, and methods for diagnosing their validity.

Assumption 1: The data from population i is sampled from a population mean vector μi.

· This assumption essentially means that there are no subpopulations with different population mean vectors.

· In our current example, this might be violated if the counterfeit notes were produced by more than one counterfeiter. 

· Generally, if you have randomized experiments, this assumption is not of any concern. However, in the current application we would have to ask the police investigators whether more than one counterfeiter might be present.

Assumption 2: For now we will skip Assumption 2 and return to it at a later time.

Assumption 3: Independence
· Says the subjects for each population were independently sampled. This does not mean that the variables are independent of one another.

· This assumption may be violated for three different reasons: 

· Clustered data: I can't think of any reason why we would encounter clustered data in the bank notes except the possibility that the bank notes might be produced in batches. In this case, the notes sampled within a batch may be correlated with one another.

· Time-series data: If the notes are produced in some order over time, that there might possibly some temporal correlation between notes produced over time. The notes produced at times close to one another may be more similar. This could result in temporal correlation violating the assumptions of the analysis.

· Spatial data: If the data were collected over space, we may encounter some spatial correlation.

· Note: the results of Hotelling's T-square are not generally robust to violations of independence. What I mean by this is that the results of Hotelling's T2 will tend to be sensitive to violations of this assumption. What happens with dependence is that the results of for some observations are going to be predictable from the results of other, usually adjacent observations. This predictability results in some redundancy in the data, reducing the effective sample size of the study. This redundancy, in a sense, means that we may not have as much data as we think we have. The consequence of violating the assumption of independence is that we will tend to reject the null hypothesis more often than we should if this assumption is violated. If the assumption of independence is violated, you should consult with a statistician.

Assumption 4: Multivariate Normality 
To assess this assumption we can produce employ the following diagnostic procedures:

· Produce histograms for each variable. What we should look for is if the variables show a symmetric distribution. 

· Produce scatter plots for each pair of variables. Under multivariate normality, we should see an elliptical cloud of points.

· Produce a three-dimensional rotating scatter plot. Again, we should see an elliptical cloud of points. 

Note that the Central Limit Theorem implies that the sample mean vectors are going to be approximately multivariate normally distributed regardless of the distribution of the original variables. 

So, in general Hotelling's T-square is not going to be sensitive to violations of this assumption.

Now let us return to assumption 2.



Assumption 2. The data from both populations have common variance-covariance matrix Σ.

This assumption may be assessed using Bartlett's Test.

Bartlett's Test

Suppose that the data from population i have variance-covariance matrix Σi; for population i = 1, 2. What we wish to do is to test the null hypothesis that Σ1 is equal to Σ2 against the general alternative that they are not equal as shown below:
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Here, the alternative is that the variance-covariance matrices differ in at least one of their elements.

The test statistic for Bartlett's Test is given by L-prime as shown below:
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This involves a finite population correction factor c, which is given below. Inside the brackets above, we have the determinants of the sample variance-covariance matrices for the individual populations as well as the pooled sample variance-covariance matrix. So, inside the brackets is the total number of observations minus 2 times the log of the determinant of the pooled variance-covariance matrix, minus n1 - 1 times the log of the determinant of the sample variance-covariance matrix for the first population, minus n2 - 1 times the log of the determinant of the sample variance-covariance matrix for the second population. (Note that is this formula, the logs are all the natural logs.)

The finite population correction factor, c, is given below:
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It is a function of the number of variables p, and the sample sizes n1 and n2.

Under the null hypothesis, Ho : Σ1 = Σ2 , Bartlett's test statistic is approximately chi-square distributed with p(p+1) divided by 2 degrees of freedom. That is,
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This number of degrees of freedom is equal to the number of unique elements in the variance-covariance matrix (taking into account at this matrix is symmetric). We will reject Ho at level α if the test statistic exceeds the critical value from the chi-square table evaluated at level α.
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Bartlett's Test may be carried out using the SAS program swiss15.sas as shown below:
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The output for swiss15.lst on the first page just gives summary information. 

On the top of page 1 we can see that we have 200 observations on 6 variables and we have two populations of notes. DF total or total degrees of freedom is the total number of observations minus 1, or 199. The DF within classes is the total sample size minus 2, in this case 198. 

The class level information is not particularly useful at this time, but it does tell us that we have 100 observations of each type of note.

Within Covariance Matrix observations gives us the sizes of the two variance-covariance matrices. In this case they are 6 by 6 matrices corresponding to the 6 variables in our analyses. It also gives the natural log of the determinant of the variance-covariance matrices. For the fake notes the natural log of the determinant of the covariance matrix is -10.79, for the real notes the natural log of the determinant of the covariance matrix is -11.2, and for the pooled the natural log of the determinant of the covariance matrix is -10.3.

Under the null hypothesis that the variance-covariance matrices for the two populations natural logs of the determinants, and the variance-covariance matrixes should be approximately the same for the fake and the real notes.

The results of Bartlett's Test are on bottom of page two of the output. Here we get a test statistic of 121.90 with 21 degrees of freedom, the 21 coming from the 6 variables. The p-value for the test is less than 0.0001 indicating that we reject the null hypothesis.

The conclusion here is that the two populations of bank notes have different variance-covariance matrices in at least one of their elements. This is backed up by the evidence given by the test statistic (L' = 121.899; d.f. = 21; p < 0. 0001). Therefore, the assumption of homogeneous variance-covariance matrices is violated.

Notes: 

· One should be aware, even though Hotelling's T2 test is robust to violations of assumptions of multivariate normality, the results of Bartlett's test are not robust to the violations of this assumption. The Bartlett's Test should not be used if there is any indication that the data are not multivariate normally distributed.

· In general, the two-sample Hotelling's T-square test is sensitive to violations of the assumption of homogeneity of variance-covariance matrices, this is especially the case when the sample sizes are unequal, i.e., n1 ≠ n2. If the sample sizes are equal then there doesn't tend to be all that much sensitivity and the ordinary two-sample Hotelling's T-square test can be used as usual.



Testing for Equality of Mean Vectors when Σ1 ≠ Σ2
The following considers a test for equality of the population mean vectors under violations of the assumption homogeneity of variance-covariance matrices.

Here we will consider the modified Hotelling's T-square test statistic given in the expression below: 
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Again, this is a function of the differences between the sample means for the two populations. But instead of being a function of the pooled variance-covariance matrix we can see that the modified test statistic is written as a function of the sample variance-covariance matrix, S1, for the first population and the sample variance-covariance matrix, S2, for the second population. It is also a function of the sample sizes n1 and n2.

For large samples, that is if both samples are large, T2 is approximately chi-square distributed with p d.f. We will reject Ho : μ1 = μ2 at level α if T2 exceeds the critical value from the chi-square table with p d.f. evaluated at level α.
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For small samples, we can calculate an F transformation as before using the formula below. 
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This formula is a function of sample sizes n1 and n2, and the number of variables p. Under the null hypothesis this will be F-distributed with p and approximately ν degrees of freedom, where 1 divided by ν is given by the formula below:
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This is involves summing over the two samples of bank notes, a function of the number of observations of each sample, the difference in the sample mean vectors, the sample variance-covariance matrix for each of the individual samples, as well as a new matrix ST which is given by the expression below:

[image: image426.png]



We will reject Ho : μ1 = μ2 at level α if the F-value exceeds the critical value from the F-table with p and ν degrees of freedom evaluated at level α.
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A reference for this particular test is given in: Seber, G.A.F. 1984. Multivariate Observations. Wiley, New York. 

This modified version of Hotelling's T-square test can be carried out on the Swiss Bank Notes data using the SAS program swiss16.sas as shown below:




	


	




The output is given in the file (swiss16.lst). 

As before, we are given the sample sizes for each population, the sample mean vector for each population, followed by the sample variance-covariance matrix for each population.

In the large sample approximation we find that T-square is 2412.45 with 6 degrees of freedom, since we have 6 variables and a p-value that is close to 0.

Note that this value for the Hotelling's T2 is identical to the value that we obtained for our un-modified test. This will always be the case if the sample sizes are equal to one another.

· Since n1 = n2, the modified values for T2 and F are identical to the original unmodified values obtained under the assumption of homogeneous variance-covariance matrices. 

· Using the large-sample approximation, our conclusions are the same as before. We find that mean dimensions of the counterfeit notes do not match the mean dimensions of the genuine Swiss bank notes. (T2 = 2412.45; d.f. = 6; p < 0. 0001). 

· Under the small-sample approximation, we also find that mean dimensions of the counterfeit notes do not match the mean dimensions of the genuine Swiss bank notes. (F = 391.92; d.f. = 6, 193; p < 0. 0001). 



Simultaneous (1 - α) x 100% Confidence Intervals 

As before, the next step is to determine how these notes differ. This may be carried out using the simultaneous (1 - α) × 100% confidence intervals.

For Large Samples: simultaneous (1 - α) × 100% confidence intervals may be calculated using the expression below:
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This involves the differences in the sample means for the kth variable, plus or minus the square root of the critical value from the chi-square table times the sum of the sample variances divided by their respective sample sizes.

For Small Samples: it is better use the expression below:
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Basically the chi-square value and the square root is replaced by the critical value from the F-table, times a function of the number variables p, and the sample sizes n1 and n2.

Example: Swiss Bank Notes

An example of the large approximation for length is given by the hand calculation in the expression below:

[image: image433.png]



Here the sample mean for the length for the genuine notes was 214.969. We will subtract the sample mean for the length of the counterfeit notes of 214.823. The critical value for a chi-square distribution with 6 degrees of freedom evaluated at 0.05 is 12.59. The sample variance for the first population of genuine note is 0.15024 which we will divide by a sample size of 100. The sample variance for the second population of counterfeit note is 0.15024 which will also divide by its sample size of 100. This yields the confidence interval that runs from -0.04 through 0.332.

The results of these calculations for each of the variables are summarized in the table below. Basically, they give us results that are comparable to the results we obtained earlier under the assumption of homogeneity for variance-covariance matrices.

	Variable
	95% Confidence Interval

	Length
	-0.040, 0.332

	Left Width 
	-0.515, -0.199

	Right Width
	-0.638, -0.308

	Bottom Margin
	-2.687, -1.763

	Top Margin
	-1.287, -0.643

	Diagonal
	1.813, 2.321




Summary

In this lesson we learned about: 

· The two-sample Hotelling's T-square test, and how to carry it out using SAS; 

· What conclusions can be drawn from the two-sample Hotelling's T-square test;

· Computing simultaneous and Bonferroni confidence intervals for the differences between sample means for each variable;

· What conclusions may be drawn from those confidence intervals (make sure that you indicate which population has the larger mean for each significant variable); and

· Methods for diagnosing the assumptions of the two-sample Hotelling's T-square test.

In practice, the data analyses should procedure as follows:

Step 1. For small samples, use histograms, scatterplots, and rotating scatterplots to assess the multivariate normality of the data. If the data do not appear to be normally distributed, apply appropriate normalizing transformations.

Step 2. Use Bartlett's test to assess the assumption that the population variance-covariance matrices are homogeneous.

Step 3. Carry out two-sample Hotelling's T-square test for equality of the population mean vectors. If Bartlett's test in Step 2 is significant, use the modified two-sample Hotelling's T-square test. If the two-sample Hotelling's T-square test is not significant, conclude that there is no statistically significant evidence that the two populations have different mean vectors, and stop. Otherwise, go to Step 4.

Step 4. Compute either simultaneous or Bonferroni confidence intervals. For the significant variables, draw conclusions regarding which population has the larger mean

Lesson 11: Multivariate Analysis of Variance (MANOVA)

Introduction

The Multivariate Analysis of Variance (MANOVA) is the multivariate analog of the Analysis of Variance (ANOVA) used in univariate statistics. We will be illustrating the Multivariate Analysis of Variance using the Romano-British Pottery data.

Here we have pottery shards collected from four sites in the British Isles: 

· L: Llanedyrn 

· C: Caldicot

· I: Isle Thorns

· A: Ashley Rails

In the following lesson, these sites will be referred to by the first letters of their name.

Each pottery sample was returned to the laboratory for chemical assay. In these assays the concentrations of five different chemicals were determined:

· Al: Aluminum

· Fe: Iron 

· Mg: Magnesium

· Ca: Calcium 

· Na: Sodium 

Each of these chemical constituents will be abbreviated using the chemical symbol in the examples that follow.

The Question that we will wish to address with these data is: 

Does the chemical content of the pottery depend on the site from which the pottery was obtained?

If this is the case then we might be able to use the chemical content of a pottery sample of unknown origin to determine which site the sample came from using discriminant analysis which we will discuss later on in a future lesson.

Before considering the Multivariate Analysis of Variance (MANOVA), we will first consider the univariate case, or Analysis of Variance (ANOVA) .

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Use SAS to perform a multivariate analysis of variance;

· Draw appropriate conclusions from the results of a multivariate analysis of variance; 

· Understand the Bonferroni method for assessing the significance of individual variables;

· Understand how to construct and interpret orthogonal contrasts among groups (treatments);

· Understand how to perform and interpret a profile analysis of linear functions of the individual variables. 



The Univariate Approach: Analysis of Variance (ANOVA) 

In the univariate case, the data can often be arranged in a table as shown in the table below:
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Here the columns correspond to the responses to g different treatments or from g different populations. And, the rows correspond to the subjects in each of these treatments or populations.

Here the notation would be: 

· Yij = Observation from subject j in group i 

· ni = Number of subjects in group i 

· N = n1 + n2 + ... + ng = Total sample size. 

Assumptions here for the Analysis of Variance are the same as they would be for a two sample t-test except they are applied to more than two groups:

1. The data from group i has common mean = μi; i.e., E(Yij) = μi . This means that there is no sub-populations with different means.

2. Homoskedasticity: The data from all groups have common variance σ2; i.e., var(Yij) = σ2. That is, the variability in the data does not depend on group membership.

3. Independence: The subjects are independently sampled. 

4. Normality: The data are normally distributed. 

The hypothesis of interest is that all of the means are equal to one another. Mathematically we write this as:
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The alternative is expressed as:
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That is, there is difference between one pair of group population means. The following notation should be considered:

· [image: image437.png]Yy



= Sample mean for group i .
This involves the summing of all the observations for j = 1 to ni belonging to the ith group and dividing by the number observations in that group. The dot in the second subscript means that the calculation involves summing over the second subscript of y.

· [image: image438.png]


= Grand mean.

This involves summing all the observations within each group and over the groups and dividing by the total sample size. The double dots indicate that we are summing over both subscripts of y.

The Analysis of Variance involves a partitioning of the total sum of squares which is defined as in the expression below:
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Here we are looking at the difference between each observation and the grand mean, squaring that difference and summing over all subjects within all groups. Note that if the observations tend to be far away from the Grand Mean then this will take a large value. Conversely, if all of the observations tend to close to be close to the Grand mean, this will take a small value. Thus, the total sums of squares measures the variation of the data about the Grand mean.

An Analysis of Variance (ANOVA) is a partitioning of the total sum of squares. In this case, there are two terms. In the first line below is simply repeated from above definition of the total sums of squares. In the second line we are adding and subtracting the sample mean for the ith group. In the third line below, we can break this out into two terms, the first term involves the differences between the observations and the group means, [image: image440.png]


, while the second term involves the differences between the group means and the grand mean. 
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The first term is call the error sum of squares and measures the variation in the data about their group means. Note that if the observations tend to be close to their group means, then this value will tend to be small. On the other hand, if the observations tend to be far away from their group means, then value will be larger. The second term is called the treatment sum of squares involves the differences between the group means the Grand mean. Here, if group means are close to the Grand mean, then this value will be small. While, if the group means tend to be far away from the Grand mean, this will take a large value. This second term is call the Treatment Sum of Squares and basically it measures the variation of the group means about the Grand mean.

These results the Analysis of Variance can be summarized in an analysis of variance table below: 

The ANOVA table contains columns for Source, Degrees of Freedom, Sum of Squares, Mean Square and F. Sources include Treatment and Error which both can be added up to a Total.

The degrees of freedom for treatment in the first row of the table is calculated by taking number of groups or treatments minus 1. The total degrees of freedom is all cases, the total sample size minus1. The Error degrees of freedom is then obtained by subtracting the total degrees of freedom minus the treatment degrees of freedom to obtain N-g.

The formulae for the Sum of Squares is given in the SS column. The Mean Square terms are obtained by taking the Sums of Squares terms and dividing by the corresponding degrees of freedom.

The final column contains the F statistic which is obtained by taking the MS for treatment and divided the MS for Error.

Under the null hypothesis that treatment is equal across group means, under Ho : μ1 = μ2 = ... = + μg, this F statistic is F-distributed with g - 1 and N - g degrees of freedom:
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The numerator degrees of freedom g - 1 comes from the degrees of freedom for treatments in the ANOVA table. This is referred to as the numerator degrees of freedom since the formula for the F-statistic involves the Mean Square for Treatment in the numerator. The denominator degrees of freedom N - g is equal to the degrees of freedom for error in the ANOVA table. This is referred to as the denominator degrees of freedom since the formula for the F-statistic involves the Mean Square Error in the denominator.

We reject Ho at level α if the F statistic is great than the critical value of the F-table, with g - 1 and N - g degrees of freedom and evaluated at level α.
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This review should have been familiar from a previous coursework.



The Multivariate Approach: Multivariate Analysis of Variance (MANOVA) 

Now we will consider the multivariate analog, the Multivariate Analysis of Variance, often abbreviated as MANOVA.

Suppose that we have data on p variables which we can arrange in a table such as the one below:
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To help you understand this table it helps to refer back to the table that was presented at the beginning of the the last section, Analysis of Variance. Where before we had columns that corresponded to g number of treatments and rows corresponding to subjects. In this multivariate case the scalar quantities, Yij, are going to be replaced by vectors having p observations. 

Notation 

Yijk = Observation for variable k from subject j in group i. These are collected into vectors: 

Yij = [image: image445.png]


= Vector of variables for subject j in group i 

ni = the number of subjects in i
N = n1 + n2 + ... + ng = Total sample size. 

Assumptions

The assumptions here will be essentially the same as the assumptions in a Hotelling's T2 test, only here they will apply to groups: 

1. The data from group i has common mean vector [image: image446.png]it
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2. The data from all groups have common variance-covariance matrix Σ. 

3. Independence: The subjects are independently sampled. 

4. Normality: The data are multivariate normally distributed. 

Here we are interested in testing the general null hypothesis that group mean vectors are all equal to one another. Mathematically this is expressed as:
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The alternative hypothesis here is that:
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This says that the the null hypothesis is false if at least one pair of treatments is different on at least one variable.

Notation

Notation includes the following, where the scalar quantities used in the univariate setting are replaced by vectors in the multivariate setting:

Sample Mean Vector
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= sample mean vector for group i . This involves adding up all of the data vectors for each of the subjects in group i and then dividing by the number of subjects in that group. This sample mean vector is comprised of the group means for each of the p variables. Thus,[image: image450.png]Yk




 = sample mean vector for variable k in group i . 



Grand Mean Vector
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= grand mean vector. This is obtained by summing all of the data vectors over all subjects and all groups. This grand mean vector is comprised of the grand means for each of the p variables. Thus, [image: image452.png]


= grand mean for variable k. 



Total Sum of Squares and Cross Products
In the univariate Analysis of Variance, we defined the Total Sums of Squares, a scalar quantity. The multivariate analog is the Total Sum of Squares and Cross Products matrix, a p x p matrix of numbers. The total sum of squares are cross products matrix is defined by the expression below:
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Here we are looking at the differences between the vectors of observations Yij and the Grand mean vector. These differences form a vector which is then multiplied by its transposed.

Here, the (k, l)th element of T is 
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For k = l, this is the total sum of squares for variable k, and measures the total variation in the kth variable. For k ≠ l, this measures the dependence between variables k and l across all of the observations.

We may partition the total sum of squares and cross products as follows:
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where E is the Error Sum of Squares and Cross Products, and H is the Hypothesis Sum of Squares and Cross Products. 

The (k, l)th element of the error sum of squares and cross products matrix E is:
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For k = l, this is the error sum of squares for variable k, and measures the within treatment variation for the kth variable. For k ≠ l, this measures the dependence between variables k and l after taking into account the treatment. 

The (k, l)th element of the hypothesis sum of squares and cross products matrix H is 
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For k = l, this is the treatment sum of squares for variable k, and measures the between treatment variation for the kth variable,. For k ≠ l, this measures dependence of variables k and l across treatments. 

The partitioning of the total sum of squares and cross products matrix may be summarized in the multivariate analysis of variance table: 

	MANOVA

	Source
	d.f. 
	SSP

	Treatments
	g - 1
	H

	Error
	N - g
	E

	Total
	N - 1
	T


We wish to reject 
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if the hypothesis sum of squares and cross products matrix H is large relative to the error sum of squares and cross products matrix E.



What does it mean for one matrix to be large relative to another matrix? 

SAS uses four different test statistics based on the MANOVA table: 

1. Wilk's Lambda [image: image459.png]A
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Here, the determinant of the error sums of squares and cross products matrix E is divided by the determinant of the total sum of squares and cross products matrix T = H + E. If H is large relative to E, then |H + E| will be large relative to |E|. Thus, we will reject the null hypothesis if Wilk's lambda is small (close to zero).

2. Hotelling-Lawley Trace [image: image460.png]T3 = trace(HE"




Here, we are multiplying H by the inverse of E; then we take the trace of the resulting matrix. If H is large relative to E, then the Hotelling-Lawley trace will take a large value. Thus, we will reject the null hypothesis if this test statistic is large.

3. Pillai Trace [image: image461.png]V = trace(HH+E)™")




Here, we are multiplying H by the inverse of the total sum of squares and cross products matrix T = H + E. If H is large relative to E, then the Pillai trace will take a large value. Thus, we will reject the null hypothesis if this test statistic is large.

4. Roy's Maximum Root: Largest eigenvalue of HE-1
Here, we multiply H by the inverse of E, and then compute the largest eigenvalue of the resulting matrix. If H is large relative to E, then the Roy's root will take a large value. Thus, we will reject the null hypothesis if this test statistic is large.

Recall: The trace of a p x p matrix 
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is equal to trace
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Statistical tables are not available for the above test statistics. However, each of the above test statistics has an F approximation: The following details the F approximations for Wilk's lambda, the Hotelling-Lawley trace, and the Pillai trace. 



1. Wilk's Lambda 
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Let 
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and 
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Then
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2. Hotelling-Lawley Trace 
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Let s 
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and 

[image: image470.png]



Then 
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3. Pillai Trace 

[image: image472.png]V = trace (HH +E)™")




Here, 
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Example: Pottery Data - Checking Model Assumptions

Before carrying out a MANOVA, first check the model assumptions: 

1. The data from group i has common mean vector μi 

2. The data from all groups have common variance-covariance matrix Σ. 

3. Independence: The subjects are independently sampled. 

4. Normality: The data are multivariate normally distributed. 

Assumption 1: The data from group i has common mean vector μi 

This assumption says that there are no subpopulations with different mean vectors. Here, this assumption might be violated if pottery collected from a given site was imported from multiple sites. 

Assumption 3: Independence: The subjects are independently sampled. This assumption is satisfied if the assayed pottery are obtained by randomly sampling the pottery collected from each site. This assumption would be violated if, for example, pottery samples were collected in clusters. In other applications, this assumption may be violated if the data were collected over time or space. 

Assumption 4: Normality: The data are multivariate normally distributed. 

Notes:

· For large samples, the Central Limit Theorem says that the sample mean vectors are approximately multivariate normally distributed, even if the individual observations are not. 

· For the pottery data, however, we have a total of only N = 26 observations, including only two samples from Caldicot. So, we cannot rely on the Central Limit Theorem. 

Diagnostic procedures are based on the residuals, computed by taking the differences between the individual observations and the group means for each variable: 
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Thus, for each subject (or pottery sample in this case), residuals are defined for each of the p variables. Then, to assess normality, we may apply the following graphical procedures:

· Plot the histograms of the residuals for each variable. Look for a symmetric distribution.

· Plot a matrix of scatter plots. Look for elliptical distributions and outliers.

· Plot three-dimensional scatter plots. Look for elliptical distributions and outliers.

If the histograms are not symmetric or the scatter plots are not elliptical, this would be evidence that the data are not sampled from a multivariate normal distribution in violation of Assumption 4. In this case, normalizing transformation should be considered. The SAS program potterya.sas below will help us check this assumption.

[image: image475.png]options 1s=78;
title "Check for normality - Pottery Data”;

Eldata potcery;

Statistics\STAT S05\data\pottery.txt”;

infile "
input site § al fe ng ca na;
Elproc gln;

class site;
model al fe my ca na = site;
output out-resids r-rel rfe mg rca ma;

Elproc print;




	


	




Results: 

· Histograms suggest that, except for sodium, the distributions are relatively symmetric. However, the histogram for sodium suggests that there are two outliers in the data. Both of these outliers are in Llanadyrn.

· Two outliers can also be identified from the matrix of scatter plots.

· Removal of the two outliers results in a more symmetric distribution for sodium. 

The results of MANOVA can be sensitive to the presence of outliers. One approach to assessing this would be to analyze the data twice, once with the outliers and once without them. The results may then be compared for consistency. The following analyses use all of the data, including the two outliers.

Assumption 2: The data from all groups have common variance-covariance matrix Σ.

This assumption can be checked using Bartlett's test for homogeneity of variance-covariance matrices. To obtain Bartlett's test, let Σi denote the population variance-covariance matrix for group i . Consider testing:
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against 
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Under the alternative hypothesis, at least two of the variance-covariance matrices differ on at least one of their elements. Let:
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denote the sample variance-covariance matrix for group i . Compute the pooled variance-covariance matrix 
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Bartlett's test is based on the following test statistic:

[image: image482.png]I4
L= C{(N*g)log Sl = Y (mi— 1)10g\s,\}

=1




where the correction factor is 
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The version of Bartlett's test considered in the lesson of the two-sample Hotelling's T-square is a special case where g = 2. Under the null hypothesis of homogeneous variance-covariance matrices, L' is approximately chi-square distributed with 
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degrees of freedom. Reject Ho at level α if 
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Example: Pottery Data 

Here we will use the SAS program pottery2.sas.

[image: image486.png]options ls=78;
title "Bartlett's Test - Pottery Data”:

Eldata potcery;
infile "

Statistics\STAT S05\data\pottery.txt”;
input site § al fe ng ca na;

Elproc aiscrin poo.
class site;
var al fe ny ca na;

ests




	


	




We find no statistically significant evidence against the null hypothesis that the variance-covariance matrices are homogeneous (L' = 27.58; d.f. = 45; p = 0.98). 

Notes: 

· If we were to reject the null hypothesis of homogeneity of variance-covariance matrices, then we would conclude that assumption 2 is violated.

· MANOVA is not robust to violations of the assumption of homogeneous variance-covariance matrices.

· If the variance-covariances matrices are determined to be unequal then the solution is to: Find a variance-stabilizing transformation. 

· Note that the assumptions of homogeneous variance-covariance matrices and multivariate normality are often violated together.

· Therefore, a normalizing transformation may also be a variance-stabilizing transformation. 



Example: MANOVA of Pottery Data 

After we have assessed the assumptions, our next step is to proceed with the MANOVA. This may be carried out using pottery.sas.

[image: image489.png]options 1s=78;
title "HANOVA - Pottery Data”:

Eldata potcery;
infile "D:\Statistics\STAT S05\data\pottery.txt”;
input site § al fe ng ca na;

Elproc print;

Elproc gln;
class site;
model al £ uy ca na = site;
contrast 'C+L-A-T' site 8 -2 8 -14;

contrast 'Avs I ' site 1 0-1 0;
contrast 'Cvs L site 0 1 0 -1;
estinate 'CH-A-T' site 8 -2 8 -14/
estinate 'Avs I ' site 1 0-1 0;
estimate 'Cvs L ' site 0 1 0 -1;

Lsneans site / stderr;
nanova hesite / printe printh;




	


	




The concentrations of the chemical elements depends on the site from which the pottery sample was obtained ( Λ* = 0.0123; F = 13.09; d.f. = 15, 50; p < 0.0001). It was found therefore, that there are differences in the concentrations of at least one element between at least one pair of sites.

Question: How do the chemical constituents differ among sites?

A profile plot may be used to explore how the chemical constituents differ among the four sites. In a profile plot, the group means are plotted on the Y-axis against the variable names on the X-axis, connecting the dots for all means within each group. A profile plot for the pottery data may be obtained using pottery1.sas
[image: image492.png]options 1s=78;
title "Profile Plot for Pottery Data”;

Eldata potcery;
infile "D:\Statistics\STAT S05\data\pottery.txt”;
input site § al fe ng ca na;

chemical="ng"; amountemg; output;
+ outpur;
: outpur;

Elproc sort;
by site chemical;

Elproc means;
by site chemical;
var amount;
output out=a nean-nean;

Elproc gplot;
axisl length=3 in;
axis? length=4.5 in:

plot neantchenical axisz;
sywboll v=J fespecial h=2 Lack:
sybol2 v- Lack:
sywbol3 vel fespecial h=2 Lack:
sywbold veN fespecial h=2 Lack:
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Results from the profile plots may be summarized as follows:

· The sample sites appear to be paired: Ashley Rails with Isle Thorns, and Caldicot with Llanedyrn.

· Ashley Rails and Isle Thorns appear to have higher aluminum concentrations than Caldicot and Llanedyrn.

· Caldicot and Llanedyrn appear to have high iron and magnesium concentrations than Ashley Rails and Isle Thorns.

· Calcium and sodium concentrations do not appear to vary much among the sites.

Note: These results are not backed up by appropriate hypotheses tests. The following shall consider hypothesis to answer specific questions about the data. These should be considered only if significant differences among group mean vectors are detected in the MANOVA.

Specific Questions: 

· Which chemical elements vary significantly across sites? 

· How do the sites differ? 

· Is the mean chemical constituency of pottery from Ashley Rails and Isle Thorns different from that of Llanedyrn and Caldicot? 

· Is the mean chemical constituency of pottery from Ashley Rails equal to that of Isle Thorns?

· Is the mean chemical constituency of pottery from Llanedyrn equal to that of Caldicot? 

Analysis of Individual Chemical Elements 

A naive approach to assessing the significance of individual variables (chemical elements) would be to carry out individual ANOVAs to test:
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for chemical k . Reject Ho at level α if 
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Problem: This does not control for experimentwise error rate. 

Just as we can apply a Bonferroni correction to obtain confidence intervals, we can also apply a Bonferroni correction to assess the effects of group membership on the population means of the individual variables.

Bonferroni Correction: Reject Ho at level α if
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or, equivalently, if the p-value from the SAS output is less than α/p. 

Example: Pottery Data 

The results for the Bonferroni correction can be found in the output of the SAS program pottery.sas as is explained below.

[image: image499.png]options 1s=78;
title "HANOVA - Pottery Data”:

Eldata potcery;
infile "D:\Statistics\STAT S05\data\pottery.txt”;
input site § al fe ng ca na;

Elproc print;

Elproc gln;
class site;
model al £ uy ca na = site;
contrast 'C+L-A-T' site 8 -2 8 -14;

contrast 'Avs I ' site 1 0-1 0;
contrast 'Cvs L site 0 1 0 -1;
estinate 'CH-A-T' site 8 -2 8 -14/
estinate 'Avs I ' site 1 0-1 0;
estimate 'Cvs L ' site 0 1 0 -1;

Lsneans site / stderr;
nanova hesite / printe printh;




	


	




Here, p = 5 variables, g = 4 groups, and a total of N = 26 observations. So, for an α = 0.05 level test, we reject 
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if
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or equivalently, if the p-value reported by SAS is less than 0.05/5 = 0.01. The results of the individual ANOVAs are summarized in the following table. All tests are carried out with 3, 22 degrees freedom (the d.f. should always be noted when reporting these results).

	Element
	F
	SAS p-value

	Al
	26.67 
	< 0.0001

	Fe
	89.88
	< 0.0001

	Mg
	49.12
	< 0.0001

	Ca
	29.16
	< 0.0001

	Na
	9.50
	0.0003


Since all of the F-statistics exceed the critical value of 4.82, or equivalently, since the SAS p-values all fall below 0.01, we can see that all chemical constituents are significant at the 0.05 level under the Bonferroni correction.

Conclusion: Means for all chemical elements differ significantly among the sites. For each element, the means for that element are different for at least one pair of sites.



Orthogonal Contrasts

Differences among treatments can be explored through pre-planned orthogonal contrasts. Contrasts involve linear combination of group mean vectors instead of linear combinations of the variables. 

Definition. The linear combination of group mean vectors
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is a (treatment) contrast if 
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Contrasts are defined with respect to specific questions we might wish to ask of the data. Here, we shall consider testing hypotheses of the form
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Example: Suppose that we have a drug trial with the following 3 treatments: 

1. Placebo 

2. Brand Name 

3. Generic 

Consider the following questions: 

Question 1. Is there a difference between the Brand Name drug and the Generic drug? That is, consider testing:
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This is equivalent to testing 
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where 
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with

c1 = 0, c2 = 1, c3 = -1 
 

Question 2. Are the drug treatments effective? That is, consider testing:
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This is equivalent to testing 
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where
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with 
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Estimation: 

The contrast 
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may be estimated by replacing the population mean vectors by the corresponding sample mean vectors:
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Since the estimated contrast is a function of our random data, the estimated contrast is also a random vector. So the estimated contrast has a population mean vector and population variance-covariance matrix. The population mean of the estimated contrast is Ψ. The variance-covariance matrix of [image: image516.png]


¸ is:
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which may be estimated by substituting the pooled variance-covariance matrix for the population variance-covariance matrix
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Definition. Two contrasts
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are orthogonal if 
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The importance of orthogonal contrasts can be illustrated by considering the following paired comparisons:

[image: image521.png])

HY
HY
Y

3}
3}




We might reject [image: image522.png]


, but fail to reject [image: image523.png]


and [image: image524.png]


. But, if [image: image525.png]


is false then both [image: image526.png]
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cannot be true. 

Notes: 

· For balanced data (i.e., n1 = n2 = ... = ng), Ψ1 and Ψ2 are orthogonal contrasts if 
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· If Ψ1 and Ψ2 are orthogonal contrasts, then the elements of [image: image529.png]


and [image: image530.png]


are uncorrelated 

· If Ψ1 and Ψ2 are orthogonal contrasts, then the tests for Ho : Ψ1 = 0 and Ho : Ψ2 = 0 are independent of one another. That is, the results on test have no impact on the results of the other test.

· For g groups, it is always possible to construct g - 1 mutually orthogonal contrasts. 

· If Ψ1, Ψ2, ... , Ψg-1 are orthogonal contrasts, then for each ANOVA table, the treatment sum of squares can be partitioned into: 
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· Similarly, the hypothesis sum of squares and cross-products matrix may be partitioned:
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Constructing Orthogonal Contrasts

The following shows two examples illustrating how orthogonal contrasts may be constructed. In each example, we are considering the case where the data are balanced; that is, there are equal numbers of observations in each group.

Example 1: 

In many cases, it is possible to draw a tree diagram illustrating the hypothesized relationships among the treatments. In the following tree, we wish to compare 5 different populations of subjects. Prior to collecting the data, we propose that populations 2 and 3 are most closely related. Populations 4 and 5 are also closely related, and population 1 is more closely related to populations 2 and 3 and population 4 and 5.
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Each branch (denoted by the letters A,B,C, and D) corresponds to a hypothesis we may wish to test. This yields the contrast coefficients as shown in each row of the following table: 
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Consider Contrast A. Here, we are comparing the mean of all subjects in populations 1,2, and 3 to the mean of all subjects in populations 4 and 5. Note that the first group of populations (1,2, and 3) has contrast coefficients with positive signs, while the second group (4 and 5) has negative signs. Since there are 3 populations in the first group, each population gets a coefficient of +1/3. Since there are 2 populations in the second group, each population gets a coefficient of -1/2.

For Contrast B, we compare population 1 (receiving a coefficient of +1) with the mean of populations 2 an 3 (each receiving a coefficient of -1/2). Multiplying the corresponding coefficients of contrasts A and B, we obtain:

(1/3) x 1 + (1/3) x (-1/2) + (1/3) x (-1/2) + (-1/2) x 0 + (-1/2) x 0 = 1/3 - 1/6 - 1/6 + 0 + 0 = 0

So contrasts A and B are orthogonal. Similar computations can be carried out to confirm that all remaining pairs of contrasts are orthogonal to one another.

Example 2:

Consider the factorial arrangement of drug type and drug dose treatments:

	
	Dose

	Drug
	Low
	High

	A
	1
	2

	B
	3
	4


Here, treatment 1 receives a low dose of drug A, treatment 2 receives a high dose of drug A, etc. For this factorial arrangement of drug type and drug dose treatments, we can form the orthogonal contrasts: 
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To test for the effects of drug type, we give coefficients with a negative sign for drug A, and positive signs for drug B. Since there are two doses within each drug type, the coefficients take values of plus or minus 1/2.

Similarly, to test for the effects of drug dose, we give coefficients with negative signs for the low dose, and positive signs for the high dose. Since there are two drugs for each dose, the coefficients take values of plus or minus 1/2.

The final test considers the null hypothesis that the effect of drug does not depend on dose, or conversely, the effect of dose does not depend on drug. In either case, we are testing the null hypothesis that there is no interaction between drug and dose. The coefficients for this interaction are obtained by multiplying the signs of the coefficients for drug and dose. Thus, for drug A at the low dose, we multiply "-" (for the drug effect) times "-" (for the dose effect) to obtain "+" (for the interaction). Similarly, for drug A at the high dose, we multiply "-" (for the drug effect) times "+" (for the dose effect) to obtain "-" (for the interaction). The remaining coefficients are obtained similarly.

Example: Pottery Data 

Recall the specific questions:

1. Does the mean chemical content of pottery from Ashley Rails and Isle Thorns equal that of pottery from Caldicot and Llanedyrn?

2. Does the mean chemical content of pottery from Ashley Rails equal that of that of pottery from Isle Thorns? 

3. Does the mean chemical content of pottery from Caldicot equal that of pottery from Llanedyrn? 

These questions correspond to the following theoretical relationships among the sites:
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The relationships among sites suggested in the above figure suggests the following contrasts:
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Notes: 

Contrasts 1 and 2 are orthogonal: 
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However, contrasts 1 and 3 are not orthogonal: 
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Solution: Instead of estimating the mean of pottery collected from Caldicot and Llanedyrn by 
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we can weight by sample size: 
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Similarly, the mean of pottery collected from Ashley Rails and Isle Thorns may estimated by 
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This yields the Orthogonal Contrast Coefficients: 
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The inspect button below will walk through how these contrasts are implemented in the SAS program pottery.sas.

[image: image544.png]options 1s=78;
title "HANOVA - Pottery Data”:

Eldata potcery;
infile "D:\Statistics\STAT S05\data\pottery.txt”;
input site § al fe ng ca na;

Elproc print;

Elproc gln;
class site;
model al £ uy ca na = site;
contrast 'C+L-A-T' site 8 -2 8 -14;

contrast 'Avs I ' site 1 0-1 0;
contrast 'Cvs L site 0 1 0 -1;
estinate 'CH-A-T' site 8 -2 8 -14/
estinate 'Avs I ' site 1 0-1 0;
estimate 'Cvs L ' site 0 1 0 -1;

Lsneans site / stderr;
nanova hesite / printe printh;




	


	




 


From the output of pottery.sas, we obtain the following table of estimated contrasts: 
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These results suggest: 

· Pottery from Ashley Rails and Isle Thorns have higher aluminum, and lower iron, magnesium, calcium, and sodium concentrations than pottery from Caldicot and Llanedyrn.

· Pottery from Ashley Rails have higher calcium and lower aluminum, iron, magnesium, and sodium concentrations than pottery from Isle Thorns.

· Pottery from Caldicot have higher calcium and lower aluminum, iron, magnesium, and sodium concentrations than pottery from Llanedyrn.

Note that these suggestions have yet to be backed up by appropriate hypotheses tests.



Hypothesis Tests

Problem: The above suggestions are not backed up by appropriate hypothesis tests. Consider hypothesis tests of the form:
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Univariate Case: 

For the univariate case, we may compute the sums of squares for the contrast:
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This sum of squares has only 1 d.f., so that the mean square for the contrast is 
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Then compute the F-ratio: 
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Reject Ho : Ψ = 0 at level α if 
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Multivariate Case: 

For the multivariate case, the sums of squares for the contrast is replaced by the hypothesis sum of squares and cross-products matrix for the contrast: 
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Note that the kth diagonal element of this matrix are

Compute Wilk's Lambda: 
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Compute the F-statistic 
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Reject Ho : Ψ = 0 at level α if 
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Example: Pottery Data 

The following table gives the results of testing the null hypotheses that each of the contrasts is equal to zero. You should be able to find these numbers in the output from pottery.sas.
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Conclusions: 

1. The mean chemical content of pottery from Ashley Rails and Isle Thorns differs in at least one element from that of Caldicot and Llanedyrn ( [image: image558.png]Al



= 0.0284; F = 122. 81; d.f. = 5, 18; p < 0.0001). 

2. There is no significant difference in the mean chemical contents between Ashley Rails and Isle Thorns ( [image: image559.png]Al



= 0.9126; F = 0.34; d.f. = 5, 18; p = 0.8788).

3. The mean chemical content of pottery from Caldicot differs in at least one element from that of Llanedyrn ( [image: image560.png]Al



= 0.4487; F = 4.42; d.f. = 5, 18; p = 0.0084). 

Once we have rejected the null hypothesis that a contrast is equal to zero, we can compute simultaneous or Bonferroni confidence intervals for the contrast:

Simultaneous (1 - α) x 100% Confidence Intervals for the Elements of Ψ are obtained by taking: 
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where 

[image: image562.png]



where ejj is the (j, j)th element of the error sum of squares and cross products matrix, and is equal to the error sums of squares for the analysis of variance of variable j . Note that these standard errors can be obtained directly from the SAS output. Look at the bottom of each page containing the individual ANOVAs.

Example: Contrast 1 for Pottery Data

Recall that we have p = 5 chemical constituents, g = 4 sites, and a total of N = 26 observations. From the F-table, we have F5,18,0.05 = 2.77. Then our multiplier is:
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Simultaneous 95% Confidence Intervals can then be computed as in the following table. The elements of the estimated contrast together with their standard errors can be found at the bottom of each page, giving the results of the individual ANOVAs. For example, the estimated contrast form aluminum is 5.294 with a standard error of 0.5972. The fourth column is obtained by multiplying the standard errors by M = 4.114. So, for example, 0.5972 x 4.114 = 2.457. Finally, the confidence interval for aluminum is 5.294 plus/minus 2.457.: 
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Element @  SE(®) MxSEP) Confidence Interval

Al 5294 0.5972 2.457 2.837,7.751
Fe -4.640 0.2844 1.170 -5.810, -3.470
Mg -4.065 0.3376 1.389 -5.454, -2.676
Ca -0.175 0.0195 0.080 -0.255, -0.095

Na -0.175 0.0384 0.158 -0.333,-0.017





Conclusion: Pottery from Ashley Rails and Isle Thorns have higher aluminum, and lower iron, magnesium, calcium, and sodium concentrations than pottery from Caldicot and Isle Thorns.

Example: Contrast 3 for Pottery Data 

Simultaneous 95% Confidence Intervals for Contrast 3 are obtained similarly to those for Contrast 1.
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Al -0.864 1.1199 4.608 -5.472,3.744
Fe -0.957 0.5333 2.194 -3.151,1.237
Mg -0.971 0.6331 2.605 -3.576,1.634
Ca 0.093 0.0366 0.150 -0.057,0.243

Na -0.201 0.0602 0.248 -0.449,0.047





Conclusion: All of the above confidence intervals cover zero. Therefore, the significant difference between Caldicot and Llanedyrn appears to be due to the combined contributions of the various variables.

Note: Since Contrast 2 is not significant, there is no reason to compute simultaneous confidence intervals for the elements of that contrast.



Bonferroni (1 - α) x 100% Confidence Intervals for the Elements of Ψ can be obtained by taking: 
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where 
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where ejj is the (j, j)th element of the error sum of squares and cross products matrix, and is equal to the error sums of squares for the analysis of variance of variable j . 

Example: Contrast 1 for Pottery Data 

Here we have a t22,0.005 = 2.819 So the Bonferroni 95% Confidence Intervals are: 
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Al 5.294 0.5972 1.684 3.610.6.978
Fe -4.640 0.2844  0.802 -5.442, -3.838
Mg -4.065 0.3376  0.952 -5.017,-3.113
Ca -0.175 0.0195  0.055 -0.230,-0.120

Na -0.175 0.0384  0.108 -0.283. -0.067





Conclusion: Pottery from Ashley Rails and Isle Thorns have higher aluminum, and lower iron, magnesium, calcium, and sodium concentrations than pottery from Caldicot and Isle Thorns.

Example: Contrast 3 for Pottery Data 

Bonferroni 95% Confidence Intervals
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Al -0.864 1.1199 3.157 -4.021,2.293
Fe -0.957 0.5333 1.503 -2.460, 0.546
Mg -0.971 0.6331 1.785 56,0.814

Ca 0.093 0.0366 0.103 -0.010, 0.196
Na -0.201 0.0602 0.170 -0.371,-0.031





Pottery from Llanedyrn have higher mean sodium concentrations than pottery from Caldicot. 



Summary

In this lesson we learned about: 

· The 1-way MANOVA for testing the null hypothesis of equality of group mean vectors;

· Methods for diagnosing the assumptions of the 1-way MANOVA;

· Bonferroni corrected ANOVAs to assess the significance of individual variables;

· Construction and interpretation of orthogonal contrasts;

· Wilk's lambda for testing the significance of contrasts among group mean vectors; and

· Simultaneous and Bonferroni confidence intervals for the elements of a contrast. 

In general a thorough analysis of data would be comprised of the following steps:

Step 1. Perform appropriate diagnostic tests for the assumptions of the MANOVA. Carry out appropriate normalizing and variance stabilizing transformations of the variables.

Step 2. Perform a one-way MANOVA to test for equality of group mean vectors. If this test is not significant, conclude that there is no statistically significant evidence against the null hypothesis that the group mean vectors are equal to one another, and stop. If the test is significant, conclude that at least one pair of group mean vectors differ on at least one element and go on to Step 3.

Step 3. Perform Bonferroni-corrected ANOVAs on the individual variables to determine for what variables there are significant differences among groups.

Step 4. Based on specific scientific questions regarding the relationships among the groups, construct g - 1 orthogonal contrasts.

Step 5. Use Wilk's lambda to test the significance of each contrast defined in Step 4.

Step 6. For the significant contrasts only, construct simultaneous or Bonferroni confidence intervals for the elements of those contrasts. Draw appropriate conclusions from these confidence intervals, making sure that you note the directions of all effects (which treatments or group of treatments have the greater means for each variable).

Lesson 12: Multiple-Factor MANOVA

Introduction

Sometimes data involve more than one factor of interest. For example, an agricultural experiment may involve a factorial arrangement of fertilizer, irrigation, and pesticide treatments. To provide an analysis of these types of data we will turn to the multiple-factor multivariate analyses of variance. You might come across a study involving multiple ANOVA's. This type of study might also benefit from including a multiple factor MANOVA. In fact, any analysis of variance performed in the univariate setting also has a multivariate analog.

We will look at Multiple Factor MANOVAs within the context of a randomized block design. But MANOVAs may be carried out in the context of any experimental design, including Latin square, split plot, etc.

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Carry out a MANOVA for any experimental design with which you are already familiar; and

· Draw appropriate conclusions from the results of the multiple-factor MANOVA.

Randomized Block Design

Within randomized block designs, we have two factors:

1. Blocks, and 

2. Treatments 

A randomized complete block design with a treatments and b blocks is constructed in two steps:

· The experimental units (the units to which our treatments are going to be applied) are partitioned into b blocks, each comprised of a units.

· Treatments are randomly assigned to the experimental units in such a way that each treatment appears once in each block.

Randomized block designs are often applied in agricultural settings. Our rice example below will make this a little bit clearer if you have not come across this type of experimental design before.

In general, the blocks should be partitioned so that:

· Units within blocks are as uniform as possible. 

· Differences between blocks are as large as possible. 

These conditions will generally give you the most powerful results.

Experimental Design Example: Rice Data 
OK, let's look at an example of such a design involving rice.

We have four different varieties of rice; varieties A, B, C and D. And, we have five different blocks in our study. So, imagine each of these blocks as a rice field or patty on a farm somewhere. These blocks are just different patches of land, and each block is partitioned into four plots. Then we randomly assign which variety goes into which plot in each block. You will note that variety A appears once in each block, as does each variety. This is how the randomized block design experiment is set up.
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A randomized block design with the following layout was used to compare 4 varieties of rice in 5 blocks
This type of experimental design is also used in medical trials where you would be looking for people with similar characteristics to be in each block. This may be people that weigh about the same amount, are the same sex, the same age or whatever factor is deemed important for that particular experiment. So generally, what you want is people within each of the blocks to be similar to one another.

Back to the rice data... In each of the partitions within each of the five blocks one of the four varieties of rice would be planted. In this experiment the height of the plant and the number of tillers per plant were measured six weeks after transplanting. Both of these measurements are indicators of how vigorous the growth is. The taller the plant and the greater number of tillers, the healthier the plant, which should lead to a higher rice yield.

In general, randomized block design data should look like this:
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We have rows for the a treatments. In this case we would have four rows, one for each of the four varieties of rice. We also set up columns for b blocks. In this case we have five columns, one for each of the five blocks. In each block, for each treatment we are going to observe a vector of variables.

Our notation is as follows:

· Let Yijk = observation for variable k from block j in treatment i 
· We will then collect these into a vector Yij which looks like this: 
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· a = Number of Treatments

· b = Number of Blocks

The MANOVA Model and Assumptions

Here we will form a model so that we can look at the assumptions. This is going to be a model for our two-way multivariate analysis of variance.

Two-way MANOVA Model

[image: image573.png],,,,,,,




In this model:

· Yij is the p x 1 vector of observations for treatment i in block j; 
This vector of observations is written as a function of the following

· νk is the overall mean for variable k; these are collected into the overall mean vector ν
· αik is the effect of treatment i on variable k; these are collected into the treatment effect vector αi
· βjk is the effect of block j on variable k; these are collected in the block effect vector βj
· εijk is the experimental error for treatment i, block j, and variable k; these are collected into the error vector εij
Assumptions

These are fairly standard assumptions with one extra one added.

1. The error vectors εij has zero population mean;

2. The error vectors εij have common variance-covariance matrix Σ — (the usual assumption of a homogeneous variance-covariance matrix)

3. The error vectors εij are independently sampled;

4. The error vectors εij are sampled from a multivariate normal distribution; 

5. There is no block by treatment interaction. This means that the effect of the treatment is not affected by, or does not depend on the block in which you are located.

These are the standard assumptions.

We could define the treatment mean vector for a treatment i such that:

[image: image574.png]B=vio




Here we could consider testing the null hypothesis that all of the treatment mean vectors are identical, 
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or equivalently, the null hypothesis that three is no treatment effect:

Ho : α1 = α2 = ... = αa = 0
This is the same null hypothesis that we tested in the One-way MANOVA. 

We would test this against the alternative hypothesis that there is a difference in at least between at least one pair of treatments on at least one variable, or:

[image: image576.png]Ha ¢ ui + gy for at least one i + j and at least one variable k




We will use standard dot notation to define mean vectors for treatments, mean vectors for blocks and a grand mean vector.

We can define a mean vector for treatment i:
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= Sample mean vector for treatment i. 

In this case it is comprised of the mean vectors for ith treatment for each of the p variables and it is obtained by summing over the blocks and then dividing of the number of blocks. The dot appears in the second position indicating that we are to sum over the second subscript, the position assigned to the blocks.
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= Sample mean for variable k and treatment i. 

 

We can define a mean vector for block j:
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= Sample mean vector for block j. 

Here we will sum over the treatments in each of the blocks and so the dot appears in the first position. Therefore, this essentially the block means for each of our treatments.
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 = Sample mean for variable k and block j.

Finally, we can define the Grand mean vector by summing all of the observation vectors over the treatments and the blocks. So you will see the double dots appearing in this case:
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= Grand mean vector. 

This involves being divided by a x b, which is the sample size in this case.

For example, [image: image582.png]a b
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= Grand mean for variable k. 

As before, we will define the Total Sum of Squares and Cross Products Matrix. This is the same definition that we used in the One-way MANOVA. It involves comparing the observation vectors for the individual subjects to the grand mean vector.
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Here, the (k,l)th element of T is
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· For k = l, this is the total sum of squares for variable k, and measures the total variation in variable k. 

· For k ≠ l, this measures the association or dependency between variables k and l across all observations.

In this case the total sum of squares and cross products matrix may be partitioned into three matrices, three different sum of squares cross product matrices:
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As show above:

· H is the Treatment Sum of Squares and Cross Products matrix;

· B is the Block Sum of Squares and Cross Products matrix;

· E is the Error Sum of Squares and Cross Products matrix. 

The (k,l)th element of the Treatment Sum of Squares and Cross Products matrix H is 
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· If k = l, is the treatment sum of squares for variable k, and measures variation between treatments. 

· If k ≠ l, this measures how variables k and l vary together across treatments. 

The (k,l)th element of the Block Sum of Squares and Cross Products matrix B is
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· For k = l, is the block sum of squares for variable k, and measures variation between or among blocks. 

· For k ≠ l, this measures how variables k and l vary together across blocks (not usually of much interest). 

The (k,l)th element of the Error Sum of Squares and Cross Products matrix E is 
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· For k = l, is the error sum of squares for variable k, and measures variability within treatment and block combinations of variable k. 

· For k ≠ l, this measures the association or dependence between variables k and l after you take into account treatment and block. 

Forming a MANOVA table

The partitioning of the total sum of squares and cross products matrix may be summarized in the multivariate analysis of variance table as shown below:

	MANOVA

	Source
	d.f.
	SSP

	Blocks
	b - 1
	B

	Treatments
	a - 1
	H

	Error
	(a - 1)(b - 1)
	E

	Total
	ab - 1
	T


SSP stands the sum of squares and cross products discussed above.

To test the null hypothesis that the treatment mean vectors are equal, we then compute a Wilks' Lambda using the following expression: 
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This is the determinant of the error sum of squares and cross products matrix, divided by the determinant of the sum of the treatment sum of squares and cross products plus the error sum of squares and cross products matrix.

Under the null hypothesis, this has an F-approximation the formula, which is quite involved and will not be review here. Instead let's take a look at our example again where we will implement these concepts.

Example: Rice Data 

The program rice.sas below shows the analysis of the rice.txt data.
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· We reject the null hypothesis that the variety mean vectors are identical (Λ = 0.342; F = 2.60; d.f. = 6, 22; p = 0.0463). At least two varieties differ in means for height and/or number of tillers. 

· Results of the ANOVAs on the individual variables: 

	Variable
	F 
	SAS p-value
	Bonferroni p-value

	Height
	4.19
	0.030
	0.061

	Tillers
	1.27
	0.327
	0.654 


Each test is carried out with 3 and 12 d.f. Since we have only 2 response variables, a 0.05 level test would be rejected if the p-value is less than 0.025 under a Bonferroni correction. Thus, if a strict α = 0.05 level is adhered to, then neither variable shows a significant variety effect. However, if a 0.1 level test is considered, we see that there is weak evidence that the mean heights vary among the varieties (F = 4.19; d. f. = 3, 12). 

· The Mean Heights are presented in the following table:

	Variety
	Mean
	Standard Error

	A
	58.4
	1.62

	B
	50.6
	1.62

	C
	55.2
	1.62

	D
	53.0
	1.62 


  

Variety A is the tallest, while variety B is the shortest The standard error is obtained from:
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· Looking at the partial correlation (found below the error sum of squares and cross products matrix in the output), we see that height is not significantly correlated with number of tillers within varieties (r = -0.278; p = 0.3572).

Summary

In this lesson we learned about: 

· How to perform multiple factor MANOVAs;

· What conclusions may be drawn from the results of a multiple factor MANOVA;

· The Bonferroni corrected ANOVAs for the individual variables.

Just as in the one-way MANOVA, we could carry out orthogonal contrasts among the four varieties of rice. However, in this case, it is not clear from the data description just what contrasts should be considered. If a phylogenetic tree were available for these varieties, then appropriate contrasts may be constructed.

Lesson 13: Repeated Measures Data

Introduction

Repeated measures data has to do with experiments where you are taking observations repeatedly over time. Under a repeated measures experiment, experimental units are observed at multiple points in time. So instead of looking at an observation at one point in time, we will look at data from more than one point in time. With this type of data we are looking at only a single response variable but measured over time.

In the univariate setting, we generally could expect the responses over time to be temporally correlated. Observations that are collected two points in time close together are more likely to be similar to one another than observations collected far apart from one another. Essentially what we are going to do here is to treat observations collected at different points of time as if they were different variables - this is the multivariate analysis approach. You will see that there will be two distinctly different approaches that are frequently considered in this analysis. One of which involves a univariate analysis. 

We will use the following experiment to illustrate the statistical procedures associated with repeated measures data...

Example - Dog Experiment

In this experiment we had a completely randomized block experimental design that was carried out to determine the effects of 4 surgical treatments on coronary potassium in a group of 36 dogs. There are nine dogs in each group, and each dog was measured at four different points in time following one of four experimental treatments:

1. Control - no surgical treatment is applied

2. Extrinsic cardiac denervation immediately prior to treatment. 

3. Bilateral thoracic sympathectomy and stellectomy 3 weeks prior to treatment. 

4. Extrinsic cardiac denervation 3 weeks prior to treatment. 

Coronary sinus potassium levels were measured at 1, 5, 9, and 13 minutes following a procedure called an occlusion. So what we are looking at is the effect of the occlusion on the coronary sinus potassium levels following different surgical treatments.

Approaches: 

There are a number of approaches that could be considered here in order to analyze this type of data. The first of these has been proposed before the advent of modern computing, so that it might be carried out using hand calculations. There are two very common historical approaches that one could take to addressing this analysis of the data from this experiment. This is followed by a more modern approach:

1. Split-plot ANOVA - this is perhaps the most common approach. 

2. MANOVA - this is what we will be primarily looking at in this lesson.

3. Mixed Models - a more modern approach that has been around for about 15 years.

Notation that will be used in this lesson: 

· Yijk = Potassium level for treatment i in dog j at time k 

· a = Number of treatments 

· ni = Number of replicates of treatment i 

· N = n1 +n2 + ... + na = Total number of experimental units 

· t = Number of observations over time 

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· How to use a split-plot ANOVA to test for interactions between treatments and time, and the main effects for treatments and time;

· How to use a MANOVA to assess test for interactions between treatments and time, and for the main effects of treatments; 

· Understand why the split-plot ANOVA may give incorrect results; and 

· Understand the shortcomings of the application of MANOVA to repeated measures data.



Approach 1 - Split-plot ANOVA 

The Split-plot ANOVA is perhaps the most traditional approach, for which hand calculations are not too unreasonable. It involves modeling the data using the linear model shown below:
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Using this linear model we are going to assume that the data for treatment i for dog j at time k is equal to an overall mean μ plus the treatment effect αi, the effect of the dog within that treatment βj(i), the effect of time τk, the effect of the interaction between time and treatment (ατ)ik, and the error εijk.

Such that:

· μ = overall mean

· αi = effect of treatment i 

· βj(i) = random effect of dog j receiving treatment i
· τk = effect of time k 

· (ατ)ik = treatment by time interaction 

· εijk = experimental error 

Assumptions: 

We are going to make the following assumptions about the data:

1. The errors εijk are independently sampled from a normal distribution with mean 0 and variance [image: image593.png]


.

2. The individual dog effects βj(i) are are also independently sampled from a normal distribution with mean 0 and variance [image: image594.png]


.

3. The effect of time does not depend on the dog; that is, there is no time by dog interaction. Generally we need to have this assumption otherwise the results would depend on which animal you were looking at - which would mean that we could not predict much for new animals.

With these types of assumptions in place, the random effect of dog and fixed effects for treatment and time, this is called a mixed effects model. 

The analysis is carried out in this Analysis of Variance Table shown below:
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The sources of the variation include treatment; Error (a) is the effect the subject within treatments; the effect of Time; the interaction between time and treatment; and Error (b) is individual error in the model. All these add up to a total. 

Degrees of Freedom - a-1 the number of treatments minus 1 .. N-a the total number of all experimental units minus the number of treatments .. t-1 for time , ..Total df is the total number of subjects times the number of times minus 1 .. The degrees of freedom for error(b) is obtained by subtraction.---- ROLLOVER for this ANOVA table above
Here are the formulas that are used to calculate the various Sums of Squares involved: 
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include in rollover
Mean Square (MS) is always derived by dividing the Sum of Square terms by the corresponding degrees of freedom.

To get the main effects for the treatment we compare the MS treatment to MS error (a) 

What we would like to do here is to compare the results here with the results we get from the MANOVA, the next approach cover in this lesson.



An Example

We will use the following SAS program dog2.sas to illustrate this procedure.
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title "Split-Plot Analysis - Dog Data”;
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Run the SAS program inspecting how the program applies this procedure. Note in the output where values of interest are located. The results are copied from the SAS output into this table here: 

	ANOVA

	Source
	d.f. 
	SS
	MS
	F

	Treatments
	3
	19.923
	6.641
	6.00 

	Error (a)
	32
	35.397
	1.106
	

	Time
	3
	6.204
	2.068 
	11.15

	Interaction
	9
	3.440
	0.382
	2.06

	Error (b)
	96
	17.800
	0.185
	

	Total
	143
	82.320
	
	


Hypotheses Tests:

Now that we have the results from the analysis, the first thing that we want to look at is the interaction between treatments and time. We want to determine here if the effect of treatment depends on time. Therefore, we will start with:

1. The interaction between treatments and time, or: 
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Here we need to look at the treatment by interaction term whose F-value is reported at 2.06. We want to compare this to an F-distribution with (a - 1)(t - 1) = 9 and (N - a)(t - 1) = 96 degrees of freedom. The numerator d.f. of 9 is tied to the source variation due to the interaction, while the denominator d.f. is tied to the source of variation due to error(b). 

We can reject Ho at level &alpha; if
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Therefore, we want to compare this to an F with 9 and 96 degrees of freedom. Here we are going to see that this is significant with a p-value of 0.0406. .

Result: We can conclude that the effect of treatment depends on time (F = 2.06; d. f. = 9, 96; p = 0.0406). 

Next Steps...

· Since the interaction between treatments and time is significant, the next step in the analysis would be to further explore the nature of that interaction using something called profile plots, (we will look at this later...). 

· If the interaction between treatments and time was not significant, the next step in the analysis would be to test for the effects of treatment and time. 

2. Let's suppose that we had not found a significant interaction. Let's do this so that you can see what it would look like to consider the effects of treatments.

Consider testing the null hypothesis that there are no treatment effects, or

Ho :[image: image602.png]ag =0




To test this null hypothesis, we compute the F-ratio between the Mean Square for Treatments and Mean Square for Error (a). We then reject our Ho at level &alpha; if
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Here, the numerator degrees of freedom is equal to the number of degrees of freedom a - 1 = 3 for treatment, while the denominator degrees of freedom is equal to the number of degrees of freedom N - a = 32 for Error(a). 

Result: We can conclude that the treatments significantly affect the mean coronary sinus potassium over the t = 4 sampling times (F = 6.00; d. f. = 3,32; p = 0.0023). 

3. Consider testing the effects of time, or to test:

Ho :[image: image604.png]



To test this null hypothesis, we compute the F-ratio between Mean Square for Time and Mean Square for Error(b). We then reject Ho at level &alpha; if 
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Here, the numerator degrees of freedom is equal to the number of degrees of freedom t - 1 = 3 for time, while the denominator degrees of freedom is equal to the number of degrees of freedom (N - a)(t - 1) = 96 for Error(b).

Result: We can conclude that coronary sinus potassium varies significantly over time (F = 11.15; d. f. = 3, 96; p < 0.0001).



Some Criticisms about the Split-ANOVA Approach

This approach and these results assume that the observations from the same dog are temporally uncorrelated with one another.

This assumption is unlikely to be tenable because the observations are likely to be temporally correlated. Typically when you have repeated measures over time, the data from the same subject at two different points of time are going to be temporally correlated. In principle, observations that are collected at times that are close together are going to be more similar to one another than observations that are far apart.

What happens with the temporal correlations is that we create redundancy in the data. The data collected at one point in time gives us information about data collected at future points in time. This leads to a redundancy in the information. The effective sample size is smaller than it appears to be. Consequently, F-tests tend to become too liberal and you would tend to reject the null hypothesis too often. To reduce the degrees of freedom would be one potential fix but this will over do it, making it too conservative!

This motivates an alternative approach, which is to treat this situation as a Multivariate Analysis of Variance problem instead of an Analysis of Variance problem.



Approach 2 - MANOVA 

What we will do in taking a multivariate approach is to collect the observations over time from the same dog, dog j receiving treatment i into a vector: 
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We will treat the data collected at different points of time as if it was data from different variables. Basically what we have is a vector of observations for dog j receiving treatment i, and each entry corresponds to data collected at a particular point in time.

The usual assumptions are made for a one-way MANOVA. In this case:

1. Dogs receiving treatment i have common mean vector μi 

2. All dogs have common variance-covariance matrix Σ 

3. Data from different dogs are independently sampled 

4. Data are multivariate normally distributed 

The Analysis: 

Step 1: Use a MANOVA to test for overall differences between the mean vectors of the four different observations and the treatments.

We will use the program dog.sas to perform this multivariate analysis.
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We use the glm procedure to analyze these data. In this case, we will look at only a one-way manova. In this case we only really have one classification variable - treatment.

The model statement includes the variables of interest on the left hand side of the equal sign in this case they are p1, p2, p3 p4, (the potassium levels at four different points in time), and the right hand side of the equal sign we put the explanatory variable treatment.

The first manova statement tests the hypothesis that the mean vector of observations over time does not depend on treatment. The printe option asks for the error of sums of squares cross products matrix as well as the partial correlations.

The second manova statement is used to test for the main effects of treatment. We'll return to this later.

The third manova statement tests for the interaction between treatment and time. We'll also return to this later.

Right now, the result that we want to focus on is the Wilk's Lambda of 0.484, and the corresponding F-approximation of 2.02 with 12, 77 d.f. A p-value of 0.0332 indicates that we can reject the null hypothesis that there is no treatment effect. 

Our Conclusion at this point: There are significant differences between at least one pair of treatments in at least one measurement of time (Λ = 0.485; F = 2.02; d.f. = 12, 77; p = 0.0332). 

Next Steps...

If we find that there is a significant difference, then with repeated measures data we tend to focus on a couple of additional questions:

First Question

Is there a significant treatment by time interaction? Or, in other words, does the effect of treatment depend on the observation time? Previously in the ANOVA analysis, this question was evaluated by looking at the F-value, 2.06. This was reported as a significant result. If we find that this is a significant interaction, the next things we need to address is, what is the nature of that interaction?

Alternative Question 

If we do not find a significant interaction, then we can collapse the data and determine if the average sinus potassium level over time differs significantly among treatments? Here, we are looking at the main effects of treatment.

Let's proceed...



Step 2: Test for treatment by time interactions

To test for treatment by time interactions we need to carry out a Profile Analysis. We can create a Profile Plot and this is done using the program dog1.sas. (This program is similar in structure to swiss13a.sas used in the Hotelling's T-square lesson previously.)

Here, we want to plot the treatment means against time for each of our four treatments. This is a way that we can examine the form that the interactions take if they are deemed significant. 
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This program plots the treatment means against time, separately for each treatment. Here, the means for treatment 1 are given by the circles, 2 squares, 3 triangles and 4 stars for treatment four.
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When we are testing for interaction we are testing the hypothesis that these lines segments are parallel to one another. 

To test for interaction, we define a new data vector data for each observation. Here we consider the data vector for dog j receiving treatment i. This data vector is obtained by subtracting the data from at time 2 minus the data from time 1, the data from time 3 minus the data from time 2, and so on...

This yields the vector of differences between successive times as can be expressed as follows:
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Since this vector is a function of the random data, it is a random vector, and so has a population mean. Thus, for treatment i, we define the population mean vector [image: image613.png]


. 

Then we will perform a MANOVA on these Zij's to test the null hypothesis that

[image: image614.png]



The SAS program dog.sas carries out this MANOVA procedure in the third MANOVA statement as highlighted below:
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In the third manova statement we are testing for interaction between treatments and time. We obtain the vector Z, by setting m equal to the differences between the data at different times. i.e., p1-p2, p3-p2, p4-p3. This will carry out the profile analysis or equivalently will test for interactions between treatment and time.

Let's look at the output. Again, be careful when you look at the results to make sure you are in the right part of the output.
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What you need to find here is the table which gives what kind of function was used in defining the vector MVAR, comprised of the elements MVAR1, MVAR2, and MVAR3. 

For MVAR 1 we have minus p1 plus p2, for MVAR 2 we have minus p2 plus p1, and so on...

The results are then found below this table in the SAS output:
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Here we get a Wilk's Lambda of 0.598 with a supporting F-value of 1.91 with 9 and 73 d.f. 

This p-value is not significant if we strictly adhere to the 0.05 significance level to evaluate whether or not this test is significant.

Conclusion: There is weak evidence that the effect of treatments depends on time (Λ = 0.598; F = 1.91; d. f. = 9, 73; p = 0.0637). 

By reporting the p-value with our results, we allow the reader to make their own judgment regarding the significance of the test. Conservative readers might say that 0.0637 is not significant and categorically state that this is not significant, inferring that there is no evidence for interactions. More liberal readers, however, might say that this is very close and we can consider this weak evidence for an interaction. When you report the results in this form, including the p-value, you are allowing the reader to make their own judgment.

Step 3: Test for the main effects of treatments

Because the results are deemed to be not significant then the next step should be to test for the main effects of the treatment. 

What we can do is to define a new variable which is equal to the sum of the observations for each animal. To test for the main effects of treatments, consider the following linear combination of the observations for each dog; that is, the sum of all the data points collected for animal j receiving treatment i.
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This is going to be a random variable and a scalar quantity. We could then define the mean as:
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Consider testing the following hypothesis that all of these means are equal to one another against the alternative that at least two of them are different, or:

Ho : [image: image620.png]



This ANOVA on the data Zij is carried out using the following MANOVA statement in SAS program dog.sas as shown below:
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h=treat sets the hypothesis test about treatments.

Then we set m = p1+p2+p3+p4 to define the random variable Z as in the above.

Now, we must make sure that we are looking are the correct part of the output!

Now, we must make sure that we are looking are the correct part of the output! We have defined a new variable MVAR in this case, a single variable which indicates that we are summing these four.

Results for Wilk's Lambda: 
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This indicates that there is a significant main effect of treatment. That is that the mean response of our four time variables differs significantly among treatments.

Conclusion: Treatments have a significant effect on the average coronary sinus potassium over the first four minutes following occlusion (Λ = 0.640; F = 6.00; d. f. = 3, 32; p = 0.0023). 

In comparing this result with the results obtained from the split-plot ANOVA we find that they are identical. The F-value, p-value and degrees of freedom are all identical. This is not an accident! This is a mathematical equality.

The problem with the multivariate procedure outlined in the above is that it makes no assumptions regarding the temporal correlation structure of the data, and hence, may be overparameterized leading to poor parameter estimates. The mixed model procedure allows us to look at temporal correlation functions involving a limited number of parameters. The mixed model procedure falls beyond the scope of this class. The following brief outline is intended to be just an overview.

Approach 3 - Mixed Model Analysis 

The mixed model initially looks identical to the split-plot model considered earlier. 
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· where

· μ = overall mean

· αi = effect of treatment i 

· βj(i) = random effect of dog j receiving treatment i
· τk = effect of time k 

· (ατ)ik = treatment by time interaction 

· εijk = experimental error 

Assumptions: 

1. The dog effects βj(i) are independently sampled from a normal distribution with mean 0 and variance [image: image624.png]


.

2. The errors εijk from different dogs are independently sampled from a normal distribution with mean 0 and variance [image: image625.png]


.

3. The correlation between the errors for the same dog depends only on the difference in observation times: 
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Several correlation functions are available in SAS, in order of increasing complexity: 

· Uncorrelated: [image: image627.png]corr(egk, g ) = 0




· Autoregressive: [image: image628.png]cont(egi.ege) = piF!




· Autoregressive Moving Average: 
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· Toeplitz: [image: image630.png]corr (&g 2y
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Notes:

· The independent data model is a special case of a autoregressive model with ρ = 0. 

· The autoregressive model is a special case of a autoregressive moving average model with γ = 1.

· The autoregressive moving average model is a special case of a toeplitz model with
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Analysis: 

Step 1: Fit the simplest model, the independent data model.

Step 2: Fit an autoregressive model. Test the null hypothesis that the autoregressive model fits significantly better than the independent data model.

· If the autoregressive model does not fit significantly better, then select the independent data model. 

· If the autoregressive model fits significantly better, then go to Step 3. 

Step 3: Fit an autoregressive moving average model. Test the null hypothesis that the autoregressive moving average fits significantly better than the autoregressive model.

· If the autoregressive moving average model does not fit significantly better, then select the autoregressive model. 

· If the autoregressive moving average model fits significantly better, then go to Step 4. 

Step 4: Fit a toeplitz model. Test the null hypothesis that the toeplitz model fits significantly better than the autoregressive moving average model.

· If the toeplitz model does not fit significantly better, then select the autoregressive moving average model. 

· If the toeplitz model fits significantly better, then select the toeplitz model. 

Each of these models are 

Each of these models may be fit using the mixed model procedure in SAS. We will look at the Mixed Model procedure using the SAS program dog3.sas as seen below:
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The general format here for the mixed model procedure requires that the data be on separate lines for your separate points in time.

Except for the first model, each of the various models we will have repeated statements. This first model corresponds to the case where the data are uncorrelated over time. The second, third and fourth models contain the repeated statements where subject is specified to be the dog within treatments, indicating within which units we have our repeated measures, in this case within each of the dogs.

This is followed by the type option which specifies what model you want. Here we set ar(1) for an autoregressive model., arma(1,1) for a 1,1 autoregressive moving average model and toep, short for a Toeplitz model.

The -2 log likelihood can be used to compare the different models. In general, we wish to minimize this quantity. We notice that the -2 log likelihood decreases with increasing model complexity. The questions remain, however, which model is most appropriate?

	Model
	-2 log likelihood 

	Independence
	239.806

	AR(1) 
	237.426

	ARMA(1,1) 
	237.329

	Toeplitz 
	237.329


We first compare the AR(1) model to the uncorrelated data model. The likelihood ratio test statistic is obtained by taking the difference in the -2 log likelihoods between the two models:
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Under Ho : p = 0, 2logΛ is approximately chi-square distributed with d.f. equal to the difference in the number of parameters estimated under the two models. The uncorrelated data model has zero correlation function parameters, but the autoregressive model has 1 correlation function parameter ρ. Therefore, we reject Ho if 

[image: image634.png]2logA > 73,




Since 
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we fail to reject the null hypothesis. 

Conclusion: There is no significant temporal correlation in the data (2 logΛ = 2.38, d.f. = 1; p > 0.05).

If we had found that the AR(1) fit significantly better than the uncorrelated data model, then we would have proceeded to compare the fits of the ARMA(1,1) with that of the AR(1) using the likelihood ratio tests, again taking the differences in the -2 log likelihoods of these two models.

Based on the above results, we select the uncorrelated data model. From the output of dog3.sas, we can obtain the hypotheses tests:

	Effect
	F
	d.f. 
	p-value 

	Treatments
	6.00
	3,32
	0.0023 

	Time
	11.15
	3,96
	< 0.0001 

	Treatment by Time
	2.06 
	9,96 
	0.0406 


Note: The results are identical to those from the split-plot ANOVA. This is because both models have the same assumptions. 

Summary

In this lesson we learned about: 

· The split-plot ANOVA for testing interactions between treatments and time, and the main effects of treatments and time;

· The use of MANOVA to testing interactions between treatments and time, and the main effect of time;

· The shortcomings of the split-plot ANOVA and MANOVA procedures for analyzing repeated measures data.

Lesson 14: Discriminant Analysis

Introduction

Up to now we have been looking at methods that have univariate analogs such as Hotelling's T-square is the multivariate analog for the t-test, while MANOVA is the multivariate analog to ANOVA. For the rest of this course we will be looking at techniques that are really strictly multivariate techniques and the first of these that we will look at is discriminant analysis. 

Suppose that we have data two or more populations of sample units. So this could apply where we have just two populations or as many as we wish. What we want to do is to be able to take a subject whose population is unknown. We don't know which population it belongs to but we have a number of different measurements on that subject. What we want to be able to do here is to identify which population that subject came from by its characteristics. 

We will look at three examples, a couple of which we have already seen. 

Example 1 - Swiss Bank Notes: 

Here we will look at Swiss bank notes. You might recall that we have two populations of bank notes, genuine, and counterfeit. Six measures are taken on each note: 

· Length 

· Right-Hand Width 

· Left-Hand Width 

· Top Margin 

· Bottom Margin 

· Diagonal across the printed area

What we would like to be able to do is to take a bank note of unknown origin and determine just from these six measurements whether or not it is real or counterfeit. This is a technique that you might be used as a merchant who wants to make sure they do not receive any counterfeit notes. Perhaps this is not as impractical as it might sound. A more modern equivalent might be some sort of scanner that would measure the notes automatically and based on the measurements make this determination.

Example 2 - Pottery Data:

Here we have pottery shards sampled from four sites: L) Llanedyrn, C) Caldicot, I) Ilse Thornes, and A)Ashley Rails. Pottery samples are returned to the laboratory for chemical analysis, and the concentrations of the following chemical constituents were measured:

· Al: Aluminum 

· Fe: Iron 

· Mg: Magnesium 

· Ca: Calcium 

· Na: Sodium 

An archaeologist may encounter a pottery specimen of unknown origin. To determine possible trade routes, the archaeologist may wish to classify its site of origin. Just by measuring the characteristics of a pottery shard from one location you might determine this was originally produced at another site, and therefore some sort of trade had taken place.

Example 3 - Insect Data:

This an ecological example, an area of study where I have frequently seen this type of analysis applied. Here, data were collected on two species of insects in the genus Chaetocnema, (a) Ch. concinna and (b) Ch. heikertlingeri. Three variables were measured on each insect: 

· width of the 1st joint of the tarsus (legs)

· width of the 2nd joint of the tarsus

· width of the aedeagus (sex organ)

Our objective is to obtain a classification rule for identifying the insect species based on these three variables. Where this would be applied here is: we might have an expert that can identify these two closely related species, but the differences are so subtle that you have to have considerable experience to be able to tell the difference. If you could make these three different measurements, that any entomologist could do, this might be a more accurate way to help differentiate between these two different species.

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Determine whether linear of quadratic discriminant analysis should be applied to a given data set;

· Be able to carry out both types of discriminant analyses using SAS;

· Be able to apply the linear discriminant function to classify a subject by its measurements;

· Understand how to assess the efficacy of a discriminant analysis. 



Bayesian Discriminant Analysis 

We are going to be looking at a Bayesian approach here. Discriminant analysis is inherently a Bayesian method. We have not talked about Bayesian statistics up to this point. What will make this Bayesian is that the population to which the species belong can be thought of as a parameter. Or, the population to which a subject belongs could be thought of as a parameter in the model. It might take values 1 or 2 if you have two different populations or values 1, 2 or 3 if you have three populations and so on. In any case we can think of this as a parametric model. 

But instead of thinking of these population classification parameters as being fixed and deterministic, we are going to treat them as random. That is, we are going to treat the identification as to which population the subject belongs to as a random variable.

Notation that will be used:

· g = Number of Populations

· πi = Population i 
Assumptions: 

1. Taking a Bayesian approach, as I stated above, we will assume that the membership in a particular population is random. Therefore we will let 
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denote the prior probability that a randomly selected sample unit belongs to population πi. 

In the Swiss Bank Notes example we might think of picking a note at random from a whole stack of notes and think of this as the probability that the selected note is counterfeit or genuine. These probabilities are call the prior probabilities. The prior probability that a randomly selected sample unit or subject belongs to population i. In this setting you will hope that the great majority of the notes selected are genuine and not counterfeit!! Therefore, maybe this prior probability would be about 99.9% that the note would be genuine and 0.1% that it would be fake.

In the insect example, if you do not know anything about the relative abundance of the two insect species you might consider equal probabilities, or equal priors. Here, you say that half of them belong to one species and half to the other.

This tends to be an arbitrary choice but we will talk a little more about the rules used for this later on.

2. Suppose that the vector of observations X, if these are sampled from population πi, then they are going to be sampled from the conditional probability density function
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whose parameters depend on the population from which the observations were obtained. For example, if we know that the data are from population i, we will assume that this sample, X, is sampled from a multivariate normal distribution with mean vector μi and variance-covariance matrix Σi.



Bayes Theorem

What we really want to be able to do is to take a randomly selected subject, measure its characteristics, and compute the probability that that subject belongs to a particular population. This probability is going to be call the posterior probability. The posterior probability that a random sample unit belongs to population πi is given by the expression below which is obtained from Bayes Theorem. It is this Bayes Theorem from which Bayesian discriminant analysis gets its name, the fact that we are using Bayes Theorem to make these posterior probability calculations. 
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Essentially this is the probability that belongs to population i given the data for that sample unit or that subject. In the numerator we are looking at the conditional probability density function of getting that data given that it comes from population i times the prior probability that it belongs population i. We are taking the prior times the conditional distribution. In some sense you can loosely think of this as the probability getting a particular set of data given that it belongs to population i times the prior probability that it belongs to that population.

Those will be calculated for each of our g populations, these products, and then summed over all of the g populations in the denominator. Here we are looking at the same product that we have in the numerator, but now summed over all the populations. Basically what this does is that if we sum this this posterior probability over all the populations we get one as required. All of these posterior probabilities have to add up to one. That is why we have this denominator appearing here.

We can also say that this posterior probability is proportional to the conditional probability density function times the prior. We are going to use this simplification for our classification. 

All of this is going to lead to a decision rule which will allow us to classify our subjects.

Decision Rule

We are going to classify the sample unit or subject into the population πi that maximizes the posterior probability p(πi). that is the population that maximizes
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We are going to calculate the posterior probabilities for each of the populations. Then we are going to assign the subject or sample unit to that population that has the highest posterior probability. Ideally that posterior probability is going to be greater than a half, the closer to 100% the better!

Equivalently we are going to assign it to the population that maximizes this product:
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The denominator that appears above does not depend on the population since it involves summing over all the populations. Equivalently all we really need to do is to assign it to the population that has the largest for this product, or equivalently again we can maximize the log of that product. A lot of times it is easier to write this log down.

That is the gist of what we will be doing here in discriminant analysis.



Discriminant Analysis Procedure

This is an 8 step procedure that is usually carried out in discriminant analysis:

· Step 1: Collect ground truth or training data.

Ground truth or training data are data with known group memberships. Here, we actually know to which population each subject belongs. For example, in the Swiss Bank Notes, we actually know which of these are genuine notes and which others are counterfeit examples.

· Step 2: Specify the prior probabilities.

· Step 3: Use Bartlett’s test to determine if variance-covariance matrices are homogeneous for the two or more populations involved.

This is to find out whether the the variance-covariance matrix depends on the population. This is a preliminary to the next step...

· Step 4: Use Hotelling’s T2 (for two samples) or MANOVA (more than two samples) to test for equality of group mean vectors. 

If we fail to reject the null hypothesis of equality mean vectors at this stage, then discriminant analysis cannot be effective. If we have no significant differences between the mean vectors for the various populations, then it is unlikely discriminant analysis will give you any useful classification rule. We need to distinguish the populations before we go any further. If you fail to reject the only other thing to consider is to take additional different measurements that might help distinguish the populations. Going on...

· Step 5: Estimate the parameters of the conditional probability density functions f ( X | πi ).

In our setting we will assume multivariate normality, which only requires estimates of the population mean vector for each population and the variance-covariance matrix for each population. Based on the priors (Step 2) and these estimates of the conditional density function (Step 5) we can...

· Step 6: Compute discriminant functions.

It is this discriminant function that is going to provide us with a rule for classification. We are going to plug into this discriminant function and be able to determine which population we should classify an unknown subject into.

· Step 7: Use cross validation to estimate misclassification probabilities.

As in all statistical procedures it is helpful to use diagnostic procedures to asses the efficacy of the discriminant analysis. You want to see if this is working reasonably well. So here we will use cross-validation to assess this classification probability. We want to be able to estimate "the probability that we will mis-classify a given subject." Typically you are going to have some prior rule as to what you consider an acceptable mis-classification rate. Those rules might involve things like, "what is the cost of mis-classification?" This could come up in a medical study where you might be able to diagnose cancer. There are really two alternative costs. The cost of mis-classifying someone as having cancer when they don't. This could cause a certain amount of emotional grief!! There is also the alternative cost of mis-classifying someone as not having cancer when in fact they do have it! The cost here is obviously greater if early diagnosis improves cure rates.

· Step 8: Classify observations with unknown group memberships.

Prior Probabilities: 

The prior probability pi represents the expected portion of the community that belongs to population πi. There are three common choices: 

1) Equal priors: [image: image641.png]o=



This would be used if we believe that all of the population sizes are equal. 

2) Arbitrary priors selected according to the investigators beliefs regarding the relative population sizes. Note that we require:
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3) Estimated priors: 
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where ni is the number observations from population πi in the training data, and N = n1 + n2 + ... + ng 

Conditional Density Functions 

Here, we shall make the following standard assumptions:

Assumptions: 

1. The data from group i has common mean vector μi 

2. The data from group i has common variance-covariance matrix Σ. 

3. Independence: The subjects are independently sampled. 

4. Normality: The data are multivariate normally distributed. 



Two Cases for Discriminant Analysis

There are two types of discriminant analyses. The type selected depends on whether or not the variance-covariance matrices are homogeneous among populations.

Case 1: Linear discriminant analysis is for homogeneous variance-covariance matrices: 
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In this case the variance-covariance matrix does not depend on the population from which the data are obtained.

Case 2: Quadratic discriminant analysis is used for heterogeneous variance-covariance matrices:
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This allows the variance-covariance matrices to depend on which population we are looking at.

In general, all of this assumes that the unit or subject which you are trying to classify actually belongs to one of the populations which you have included. If you have a study where you are looking at species A and B, two insects let's say, if the individual actually belongs to species C and it wasn't included in the study then it will obviously be mis-classified as to belonging to either A or B.



Linear Discriminant Analysis 

Linear discriminant analysis is used when the variance-covariance matrix does not depend on the population from which the data are obtained. In this case, our decision rule is based on the so-called Linear Score Function which is a function of the population means for each of our g populations μi, as well as the pooled variance-covariance matrix. 

The Linear Score Function is:
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and
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The far left-hand expression resembles a linear regression with intercept term di0 and regression coefficients dij.

Linear Discriminant Function:
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Given a sample unit with measurements x1, x2, ... , xp, we classify the sample unit into the population that has the largest Linear Score Function, so this becomes our decisions rule:

Decision Rule: Classify the sample unit into the population that has the largest linear score function.

The linear score function is computed for each population, then we assign the unit to the population with the largest score.

Problem:
We run into a problem, however, this function is a function of unknown parameters, μi and Σ. So, these must be estimated from the data. 

Discriminant analysis requires estimates of:

Prior probabilities: 
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The Population Means: these can be estimated by the sample mean vectors: 
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The Variance-covariance matrix: this is going to be estimated by using the pooled variance-covariance matrix which we talked about earlier:
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Typically, these parameters are estimated from training data, in which the population membership is known. 

Conditional Density Function Parameters:

Population Means: μi can be estimated by substituting in the sample means[image: image653.png]


. 

Variance-Covariance matrix: Let Si denote the sample variance-covariance matrix for population i. Then the variance-covariance matrix Σ can be estimated by substituting in the pooled variance-covariance matrix into the Linear Score Function as shown below:
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to obtain the estimated linear score function:
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where 
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and
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This is going to be a function of our sample mean vectors, as well as the pooled variance-covariance matrix and our prior probabilities for our g different populations. We have written this in a form that looks like a linear regression formula where we have an intercept term plus a linear combination of our response variables, plus the natural log of the prior probabilities.

Decision Rule: Classify the sample unit into the population that has the largest linear score function. 



Example - Insect Data

Let's review the context for this dataset. Data were collected on two species of insects in the genus Chaetocnema, (species a) Ch. concinna and (species b) Ch. heikertlingeri. Three variables were measured on each insect: 

· X1 = Width of the 1st joint of the tarsus (legs)

· X2 = Width of the 2nd joint of the tarsus 

· X3 = Width of the aedeagus (sec organ)

We have ten individuals of each species in the data set to provide our ground truth data or our training data if you like. We will use these ten individuals of each species to estimate our model parameters which we will use in our linear score function.

Our objective is to obtain a classification rule for identifying the insect species from these three variables. 

Let's begin...

Step 1: Collect the ground truth data or training data. (described above)

Step 2: Specify the prior probabilities. In this case we don’t have any information regarding the relative abundances of the two species. I don't know how common these species are, whether one species is more common than the other. Having no information in order to help specify my prior probabilities, by default what I will do is select equal priors where both priors will be equal to one half or:
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Step 3: Test for homogeneity of the variance-covariance matrices using Bartlett's test. 

Here we will use the SAS program insect.sas as shown below:

[image: image659.png]options 1s=78;
title "Discriminant Analysis - Insect Data”;

Edata insect;
infile "D:\Statistics\STAT S05\data\insect.txt”;
input species § jointl joint2 aedeagus;

data test;
input jointl joint2 aedeagus;
cards;
194 124 43

est crossvalidate cestdat:

Eproc discrin dat:
class species;
var jointl jointz asdeagus;

nsect poo.

Eproc print;




	


	




Here we found no significant between the variance-covariance matrices for the two species (L' = 9.83; d.f. = 6; p = 0.132). Since this result is not significant that suggest that the linear discriminant analysis is appropriate for the data and will be performed.

Step 4: Test for equality of group mean vectors. This ordinary two-sample Hotelling’s T2 test reveals that the two species differ significantly in at least one measurement ( T2 = 131.88; F = 39.08; d.f. = 3, 16; p < 0.0001). This suggests that we should have some chance of success with our discriminant analysis so we continue... 

If we had found a non-significant result here that would suggest that a discriminant analysis would fail. If there is not a significant difference between these two species by a Hotelling's T2 test, it is unlikely that discriminant analysis will succeed in correctly classifying the insects. The only thing we could do at this point would be to go back an collect more variables which could be used to discriminate between the two species...

Step 5: Estimate the parameters of the conditional probability density functions, i.e., the population mean vectors and the population variance-covariance matrices involved. It turns out that all of this is done automatically in the discriminant analysis procedure. SAS goes directly to the computation of the linear discriminant function and does not print out the sample mean vectors or the pooled variance-covariance matrix.

Step 6: The linear discriminant functions for the two species can be obtained directly from the SAS output.
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Now, we can consider the classification of an insect with the following measurements:

	Variable
	Measurement

	Joint 1
	194 

	Joint 2
	124

	Aedeagus
	49 


These are responses for our first three variables. So here is the linear discriminant function for species a and all I will do is to plug in the values for these three measurements into the equation for species (a):
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= -247.276 - 1.417 x 194 + 1.520 x 124 + 10.954 x 49 = 203.052 

and then for species (b):
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= -193.178 - 0.738 x 194 + 1.113 x 124 + 8.250 x 49 = 205.912

Then the linear score function is obtained by adding in a log of one half, here for species (a):
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and then for species (b):
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Conclusion

The rule says, in this case, that since we have equal prior probabilities we are going to classify the insect into the species that has the highest linear discriminant function. Since [image: image667.png]$h(x) > 35(x)



, we conclude that the insect belongs to species (b) Ch. heikertlingeri. 
Of course here the calculations for the linear score function where we just add the log of one half - you can see that it doesn't make much difference. The rule is going to be the same. Since the linear score function for species (b) is greater than the linear score function for species (a) we will classify the insect into species (b).

You can think of these priors as a 'penalty' in some sense. If you have a higher prior probability of a given species you will give it very little 'penalty' because you will be taking the log of something close to one which isn't going to subtract much. But if there is a low prior probability you will be taking the log of a very small number, this will end up in a large reduction.

Note: SAS by default will assume equal priors. Later on we will look at an example where we will not assume equal priors - the Swiss Banks Notes example.

Posterior Probabilities

You can also calculate the posterior probabilities. These are used to measure uncertainty regarding the classification of a unit from an unknown group. They will give us some indication of our confidence in our classification of individual subjects.

In this case, the estimated posterior probability that the insect belongs to species (a) Ch. concinna given the observed measurements can be obtained by using this formula:
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This is a function of our linear score functions for our two species. Here we are looking at the exponential function of the linear score function for species (a) divided by the sum of the exponential functions of the score functions for species (a) and species (b). Using the numbers that we obtained earlier we can carry out the math and get 0.05.

Similarly for species (b), the estimated posterior probability that the insect belongs to Ch. heikertlingeri is:
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In this case we are 95% confident that the insect belongs to species (b). This is a pretty high level of confidence but there is a 5% chance that we might be in error in this classification. One of the things that you would have to decide is what is an acceptable error rate here. For classification of insects this might be perfectly acceptable, however, in some situations it might not be. For example, looking at the cancer case that we talked about earlier where we were trying to classify someone as having cancer or not having cancer, it may not be acceptable to have 5% error rate. This is an ethical decision that has to be made. It is a decision that has nothing to do with statistics but must be tailored to the situation at hand.



Estimating Misclassification Probabilities

If we took a random insect or a random number of the community of our populations, what is the likelihood that we are going to misclassify this randomly selected subject. One approach that might be considered for this would be to look at the so-called 'confusion table'. What we are going to do is use our linear discriminant function on the observed data to try to attempt to classify the ground truth data. As you recall, we actually do know to which population each subject belongs. 



Method 1. The confusion table describes how the discriminant function will classify each observation in the data set. In general, the confusion table takes the form:
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So our truth here is going to be rows 1 through g, basically these are our g populations to which they truly belong. Across the columns we are looking at how they are classified. n11 is the number of insects correctly classified in species (1). But n12 is the number of insects incorrectly classified into species (2). In this case nij = the number belonging to population i classified into population j. What we hope here is that both of these off-diagonal elements of this square matrix are going to be 0's, or very small numbers.

The row totals give the number of individuals belonging to each of our populations or species in our ground truth dataset. The column totals give the number classified into each of these species. n.. here is the total number of observations in our ground truth dataset. The dot notation is used here in the row totals for summing over the second subscript, whereas in the column totals we are summing over the first subscript.

We will let:
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denote the probability that a unit from population πj is classified into population πi. These misclassification probabilities can be estimated by taking the number of insects from population j that are misclassified into population i divided by the total number of insects in the sample from population j as shown here:
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This will give us our misclassification probabilities.

Example - Insect Data:
From the SAS output, we obtain the following confusion table.

	Classified As

	Truth
	a
	b
	Total

	a
	10
	0
	10

	b
	10
	10
	20

	Total
	10
	10
	20


Here, no insect was misclassified. So, the misclassification probabilities are all estimated to be equal to zero. 

Problem: This method under-estimates the misclassification probabilities. The estimated discriminant function does a better job of separating the samples from the observed data than the underlying populations. 



Method 2: Set Aside Method 

Step 1: Randomly partition the observations into two ”halves” 

Step 2: Use one ”half” to obtain the discriminant function. 

Step 3: Use the discriminant function from Step 2 to classify all members of the second ”half” of the data, from which the proportion of misclassified observations can be computed.

Advantage: This method yield unbiased estimates of the misclassification probabilities. 

Problem: Does not make optimum use of the data, and so, estimated misclassification probabilities are not as precise as possible.



Method 3: Cross validation

Step1: Delete one observation from the data. 

Step 2: Use the remaining observations to compute a discriminant function. 

Step 3: Use the discriminant function from Step 2 to classify the observation removed in Step 1. Steps 1-3 are repeated for all observations; compute the proportions of observations that are misclassified. 

Example: Insect Data 

The confusion table for the cross validation is

	Classified As

	Truth
	a
	b
	Total

	a
	10
	2
	10

	b
	2
	8
	20

	Total
	10
	10
	20


Here, the estimated misclassification probabilities are:
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for insects belonging to species A, and 
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for insects belonging to species B.

Specifying Unequal Priors 

Suppose that we have information that suggests that 90% of the insects belong to Ch. concinna. Then the score functions for the unidentified specimen are
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and 
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In this case, we would still classify this specimen into Ch. heikertlingeri with posterior probabilities 
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These priors can be specified in SAS by adding the ”priors” statement: priors ”a” = 0.9 ”b” = 0.1; following the var statement.



Quadratic Discriminant Analysis 

Earlier in this lesson we established that there were two cases in which discriminant analysis would occur. Case 1 was Linear Discriminant Analysis is for homogeneous variance-covariance matrices and in this case the variance-covariance matrix does not depend on the population from which the data are obtained.

We will now look at the second case: Quadratic Discriminant Analysis is used for heterogeneous variance-covariance matrices:
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Again, this allows the variance-covariance matrices to depend on which population we are looking at.

Instead of the linear score function, quadratic discriminant analysis calculates a Quadratic Score Function which looks like this:
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This is going to be a function of our population mean vectors for each of our g groups and the variance-covariance matrices for each of our g groups. Similarly we will determine a separate quadratic score function for each of the groups.

This is of course a function of our unknown population mean vector for group i and the variance-covariance matrix for group i. These will have to be estimated from ground truth data. As before, we replace the unknown values of μi, Σi,and pi by their estimates to obtain the estimated quadratic score function as shown below:
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All natural logs that are used in this function.

Decision Rule: Our decision rule remains the same as well. We will classify the sample unit or subject into the population that has the largest quadratic score function.

Let's illustrate this using the Swiss Bank Notes example...



Example: Swiss Bank Notes

This is an example that we used in Hotelling's T2. Recall that we have two populations of notes, genuine, and counterfeit and that six measurements were taken on each note: 

· Length 

· Right-Hand Width 

· Left-Hand Width 

· Top Margin 

· Bottom Margin 

· Diagonal 

Priors

In this case it would not be reasonable to consider equal priors for the two types of banknotes. Equal priors would assume that half the banknotes in circulation are counterfeit and half are genuine. This is a very high counterfeit rate and if it was that bad the Swiss government would probably by bankrupt! So we need to consider unequal priors in which the vast majority of banknotes are thought to be genuine. For this example let's assume that no more than 1% of bank notes in circulation are counterfeit and 99% of the notes are genuine. In this case the prior probability can be expressed as:
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The first step in the analysis is going to carry out Bartlett's test to check for homogeneity of the variance-covariance matrices.

To do this we will use the SAS program swiss9.sas - shown below:

[image: image682.png]options ls=78;
title "Discriminant - Suiss Bank Notes”:

Edata real;
infile "D:\Statistics\STAT S05\data\suissl.txt”;
input length left right bottom top diag:

type=rreal”;
Edata fake;

infile "D:\Statistics\STAT S05\data\suissZ.txt”;
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= data combine;
set real fake;

data test;
input length left right bottom top diag:
cards;
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est crossvalidate testdatastest testoutea;

Eproc discrin dat:
class type;
var length left right botton top diag:
priors “real”=0.9 “fake"=0.1;

ombine poo

proc print;




	


	




Running the program we find that Bartlett's Test finds a significant difference between the variance-covariance matrices of the genuine and counterfeit bank notes (L' = 121.90; d.f. = 21; p < 0.0001). 

Under our conclusion, given these results, we would state that the variance-covariance matrices are not equal for the two groups of notes. The variance-covariance matrix for the genuine notes is not equal to the variance-covariance matrix for the counterfeit notes. We have found a difference on at least one of the elements of these matrices.

Since we reject the null hypothesis here of equal variance-covariance matrices this suggest that a linear discriminant analysis will not be appropriate for these data.What we want to do then is to conduct a quadratic discriminant analysis for these data. 

SAS Notes

By default, SAS will make this decision for you. Let's look at the proc descrim procedures in the SAS Program swiss9.sas that we just used.
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By including this pool=test, above, what SAS will do is decide what kind of discriminant analysis is going to be carried based on the results of this test.

If you fail to reject, SAS will automatically do a linear discriminant analysis. If you reject, then SAS will do a quadratic discriminant analysis. 

There are two other options here. If we put pool=yes then SAS will not carry out Bartlett's test but will go ahead and do a linear discriminant analysis whether it is warranted or not. It will pool the variance-covariance matrices and do a linear discriminant analysis.

If pool=no then SAS will not pool the variance-covariance matrices and SAS will then perform the quadratic discriminant analysis.

SAS does not actually print out the quadratic discriminant function, but it will use quadratic discriminant analysis to classify sample units into populations. 



OK, let's consider a bank note with the following measurements that were entered into program:

	Variable
	Measurement

	Length
	214.9

	Left Width
	130.1

	Right Width
	129.9

	Bottom Margin
	9.0 

	Top Margin
	10.6 

	Diagonal
	140.5 


As usual you can enter any number of lines of measurements. Here we are just interested in this one set of measurements. SAS reports that this bank note should be classified as real or genuine. The posterior probability that it is fake or counterfeit is only 0.000002526. So, the posterior probability that it is genuine is very close to one as reported by SAS (actually, this posterior probability is 1 - 0.000002526 = 0.999997474). We are nearly 100% confident that this is a real note and not counterfeit.

Next consider the results of crossvalidation. Note that crossvalidation yields estimates of the probability that a randomly selected note will be correctly classified. From the SAS output, the resulting confusion table is as follows:

	Classified As

	Truth
	Counterfeit
	Genuine
	Total

	Counterfeit
	98
	2
	100

	Genuine
	1
	99
	100

	Total
	99
	101
	200


Here, we can see that 98 out of 100 counterfeit notes are expected to be correctly classified, while 99 out of 100 genuine notes are expected to be correctly classified.Thus, the estimated misclassification probabilities are estimated to be:

[image: image686.png]Plrealifake) = 0.02 and p(fakelreal) = 0.01




The question remains: Are these acceptable misclassification rates?

A decision should be made in advance as to what would be the acceptable levels of error. Here again, you need to think about the consequences of making a mistake. In terms of classifying a genuine note as a counterfeit, one might put somebody in jail who is innocent. If you make the opposite error you might let a criminal get away. What are the costs of these types of errors? And, are the above error rates acceptable? This decision should be made in advance. You should have some prior notion of what you would consider reasonable.



Summary

In this lesson we learned about: 

· How to determine what type of discriminant analysis should be carried out, linear or quadratic; 

· How the linear discriminant function can be used to classify a subject into the appropriate population;

· Issues regarding the selection of prior probabilities that a randomly selected subject belongs to a particular population;

· The use of posterior probabilities to assess the uncertainty of the classification of a particular subject; 

· The use of crossvalidation and confusion tables to assess the efficacy of discriminant analysis. 

Lesson 15: Principal Components Analysis (PCA)

Introduction

Suppose that a large number of variables are measured for a single population. The dataset that we are going to consider in this case is the Places Rated dataset.

Example: Places Rated

In the Places Rated Almanac, Boyer and Savageau rated 329 communities according to the following nine criteria:

1. Climate and Terrain 

2. Housing 

3. Health Care & the Environment

4. Crime 

5. Transportation 

6. Education

7. The Arts

8. Recreation 

9. Economics

Note that within the dataset, except for housing and crime, the higher the score the better. For housing and crime, the lower the score the better. Where some communities might do better in the arts, other communities might be rated better in other areas such as having a crime rate and good educational opportunities.

Objective

What we are trying to do is a data reduction of the nine variables so that we can describe the inter-relationships among the variables. 

With a large number of variables, there would therefore be a large number of correlations between all of these variables to consider. What we are going to do is to reduce the data to a few, interpretable linear combinations of the data. Each linear combination will correspond to a principal component.

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Carry out a principal components analysis using SAS;

· Assess how many principal components should be considered in an analysis; 

· Interpret principal component scores. Be able to describe a subject with a high or low score;

· Determine when a principal component analysis may be based on the variance-covariance matrix, and when the correlation matrix should be used;

· Understand how principal component scores may be used in further analyses.



Alternative Approaches

Approach 1: Compute correlations among all pairs of variables.

Problem: There are [image: image687.png]


pair-wise correlations in the matrix. For p = 12, this is [image: image688.png]1212-1) _ g6



such correlations. With such a large number of correlations, it is difficult to interpret the results. This number of correlations goes well beyond the number of numbers that the human mind can grasp at any given point in time. 

Approach 2: Graphical display of data. 

Here there are several possibilities. 

· Matrices of scatter plots. 

· Limited to two variables at a time.

· This suffers from the same difficulty as the correlation matrix.

· Three-dimensional scatter plots. 

· Limited to three variables at a time. 

· Here there are [image: image689.png]


such plots. For p = 12, this is [image: image690.png]_ 12x11x10

3x2x1

220



again, it is difficult to interpret so many plots. 

· Star plots(pp. 24-28) can be used to graph any number of variables simultaneously, but these are only practical for small sample sizes. 

Approach 3: Principal Components Analysis(PCA) 

Reduce the dimension of the problem by projecting the data from a p-dimensional space to a space of less than p dimensions. 

Approach 4: Factor Analysis (later lesson) 



Principal Component Analysis (PCA) Procedure

Suppose that we have a random vector X.
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with population variance-covariance matrix
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Consider the linear combinations 
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Each of these can be thought of as a linear regression, predicting Yi from X1, X2, ... , Xp. There is no intercept, but ei1, ei2, ..., eip can be viewed as regression coefficients.

Note that Yi is a function of our random data, and so is also random. Therefore it has a population variance
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Moreover, Yi and Yj will have a population covariance
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Here the coefficients eij are collected into the vector
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Definition: Principal Component Analysis

What I would like you to do is to visualize a 9 dimensional scatter plot and think about viewing that scatter plot from a number of different angles. What you want to try to do is to find a viewpoint of the scatter plot so that we see as much variability across the x-axis as possible. That variability will be expressed in terms of the variability of the first component.

First Principal Component (PCA1): Y1 

Specifically we will define coefficients e11, e12, ... , e1p for that component in such a way that its variance is maximized. At the same time we are also going to do is to subject this to the constraint that the sum of the squared coefficients has to be equal to one. This constraint is required so that a unique answer may be obtained.

More formally, select e11, e12, ... , e1p that maximizes
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subject to the constraint that 
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Second Principal Component (PCA2): Y2
Now what we are going to do is to rotate the 9 dimensional scatter plot around the x-axis that we had just selected. We are going to rotate it around in such a way so that the variability is maximized on a new y-axis. This is expressed in this definition for the second principal component:

Select e21, e22, ... , e2p that maximizes the variance of this new component...
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subject to the constraint that the sums of squared coefficients add up to one...
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along with the additional constraint that these two components will be uncorrelated with one another...
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We will do this in the same way with each additional component. For instance:

ith Principal Component (PCAi): Yi 

We select ei1, ei2, ... , eip that maximizes 
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subject to the constraint that the sums of squared coefficients add up to one...along with the additional constraint that this new component will be uncorrelated with all the previously defined components.
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Therefore all of our principal components that are all uncorrelated with one another. 

How do we find the coefficients?

How do we find the coefficients eij for a principal component?

The solution involves the eigenvalues and eigenvectors of the variance-covariance matrix Σ.

Solution: 

We are going to let λ1 through λp denote the eigenvalues of the variance-covariance matrix Σ. These are ordered so that λ1 has the largest eigenvalue and λp is the smallest.
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We are also going to let the vectors e1 through ep
e1, e2, ... , ep
denote the corresponding eigenvectors. It turns out that the elements for these eigenvectors will be the coefficients of our principal components.

The results here is going to be that the variance for the ith principal component is going be equal to the ith eigenvalue.
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Moreover, the principal components are uncorrelated with one another. 
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We will also find that you can write the variance-covariance matrix as a function of the eigenvalues and their corresponding eigenvectors. This is determined by using the Spectral Decomposition Theorem. This will become useful later when we investigate topics under factor analysis.

Spectral Decomposition Theorem 

The variance-covarianc matrix can be written as the sum over the p eigenvalues, multiplied by the product of the corresponding eigenvector times its transpose as shown in the first expression below:
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The second expression is a useful approximation if [image: image708.png]


are small. We might approximate Σ by
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Again, this will become more useful when we talk about factor analysis. 

Earlier in the course we defined the total variation of X as the trace of the variance-covariance matrix, or if you like, the sum of the variances of the individual variables. This is also equal to the sum of the eigenvalues as shown below:
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This will give us an interpretation of the components in terms of the amount of the full variation explained by each component. The proportion of variation explained by the ith principal component is then going to be defined to be the eigenvalue for that component divided by the sum of the eigenvalues. Or, divided by the total variation.
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Another quantity that is often reported is the proportion of variation explained by the first k principal component. This would be the sum of the first k eigenvalues divided by its total variation.
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Basically what we will is look at the proportion of variation explained by the first k principal components. If this is large, then we do not lose much information by considering only the first k principal components.

Note

All of this is defined in terms of the population variance-covariance matrix Σ which is unknown. However, we may estimate Σ by the sample variance-covariance matrix which is given in the standard formula here:
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Procedure

Compute the eigenvalues [image: image714.png]


of the sample variance-covariance matrix S, and the corresponding eigenvectors [image: image715.png]@
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Then we will define our estimated principle components using the eigenvectors as our coefficients:
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Generally, we only retain the first k principal component. Here we must balance two conflicting desires:

1. To obtain the simplest possible interpretation, we want k to be as small as possible. If we can explain most of the variation just by two principal components then this would give us a much simpler description of the data. The smaller k is the smaller amount of variation is explained by the first k component.

2. To avoid loss of information, we want the proportion of variation explained by the first k principal components to be large. Ideally as close to one as possible; i.e., we want 
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Example: Places Rated 

We will use the Places Rated Almanac data (Boyer and Savageau) which rates 329 communities according to nine criteria:

1. Climate and Terrain 

2. Housing 

3. Health Care & Environment 

4. Crime 

5. Transportation 

6. Education 

7. The Arts 

8. Recreation 

9. Economics 

Notes: 

· The data for many of the variables are strongly skewed to the right. 

· The log transformation was used to normalize the data.

The SAS program places.sas will implement the principal component procedures:
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When you examine the output, the first thing that SAS does is to give us summary information. There are 329 observations representing the 329 communities in our dataset and 9 variables. This is followed by simple statistics that report the means and standard deviations for each variable.

Below this is the variance-covariance matrix for the data. You should be able to see that the variance reported for climate is 0.01289.

What we really need to draw our attention to here is the eigenvalues of the variance-covariance matrix. In the SAS output the eigenvalues in ranked order from largest to smallest. These values have been copied into Table 1 below for discussion.

If you take all of these eigenvalues and add them up and you get the total variance of 0.5223.

The proportion of variation explained by each eigenvalue is given in the third column. Or, 0.3775 divided by the 0.5223 equals 0.7227, or, about 72% of the variation is explained by this first eigenvalue. The cumulative percentage explained is obtained by adding the successive proportions of variation explained to obtain the running total. For instance, 0.7227 plus 0.0977 equals 0.8204, and so forth. Therefore, about 82% of the variation is explained by the first two eigenvalues together.

The differences column is obtained by subtracting the second eigenvalue, 0.051, from the first eigenvalue, 0.377, and you get the difference, 0.326. What some people will look for here is a sharp drop. Actually, there is one here between the first and second as well as between the second and third.

Data Analysis: 

Step 1: We will examine the eigenvalues to determine how many principal components should be considered:

Table 1. Eigenvalues, and the proportion of variation explained by the principal components.

	Component
	Eigenvalue
	Proportion
	Cumulative

	1
	0.3775
	0.7227
	0.7227

	2
	0.0511
	0.0977
	0.8204

	3
	0.0279
	0.0535
	0.8739

	4
	0.0230
	0.0440
	0.9178

	5
	0.0168
	0.0321
	0.9500

	6
	0.0120
	0.0229
	0.9728

	7
	0.0085
	0.0162
	0.9890

	8
	0.0039
	0.0075
	0.9966

	9
	0.0018
	0.0034
	1.0000

	Total
	5225
	
	


The first three principal components explain 87% of the variation. This is an acceptably large percentage. 

Step 2: Next, we will compute the principal component scores. For example, the first principal component can be computed using the elements of the first eigenvector: 
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In order to complete this formula and compute the principal component for the individual community you were interested in you would plug in that communities values for each of these variables. What SAS will do, which is fairly standard, is rather than use the raw data here, SAS will use the difference between the variables and their sample means. This does not affect the interpretation.

What ends up happening here is that the magnitudes of the coefficients give the contributions of each variable to that component. However, the magnitude of the coefficients also depend on the variances of the corresponding variables. 

Interpretation of the Principal Components

Step 3: To interpret each component, we must compute the correlations between the original data for each variable and each principal component. 

These correlations are obtained using the correlation procedure. In the variable statement we will include the first three principal components, "prin1, prin2, and prin3", in addition to all nine of the original variables. We will use these correlations between the principal components and the original variables to interpret these principal components.

From the output, you will note that all of the principal components all have means of zero. This is because SAS is going to subtract the mean from each observation first. The standard deviation is also given for each of the components and these will be the square root of the eigenvalue.

More important for our current purposes are the correlations between the principal components and the original variables. These have been copied into the following table. You will also note that if you look at the principal components themselves that there is zero correlation between the components. 

	
	Principal Component 

	Variable
	1
	2
	3

	Climate
	0.190
	0.017
	0.207

	Housing
	0.544
	0.020
	0.204

	Health
	0.782
	-0.605
	0.144

	Crime
	0.365
	0.294
	0.585

	Transportation
	0.585
	0.085
	0.234

	Education
	0.394
	-0.273
	0.027

	Arts
	0.985
	0.126
	-0.111

	Recreation
	0.520
	0.402
	0.519

	Economy
	0.142
	0.150
	0.239


Interpretation of the principal components is based on finding which variables are most strongly correlated with each component, i.e., which of these numbers are large in magnitude, the farthest from zero in either positive or negative direction. This is a subjective decision, which numbers we consider to be large or small. You need to determine at what level the correlation value will be of phenomenological importance. In this case we are saying that a correlation value above 0.5 will be deemed important. These larger correlations are in boldface in the table above:

We will now interpret the principal component results with respect to the value that we have deemed significant.

First Principal Component Analysis - PCA1

The first principal component is strongly correlated with five of the original variables. The first principal component increases with increasing Arts, Health, Transportation, Housing and Recreation scores. This suggests that these five criteria vary together. If one increases, then the remaining two also increase. This component can be viewed as a measure of the quality of Arts, Health, Transportation, and Recreation, and the lack of quality in Housing (recall that high values for Housing are bad). Furthermore, we see that the first principal component correlates most strongly with the Arts. In fact, we could state that based on the correlation of 0.985 that this principal component is primarily a measure of the Arts. It would follow that communities with high values would tend to have a lot of arts available, in terms of theaters, orchestras, etc. Whereas communities with small values would have very few of these types of opportunities.

Second Principal Component Analysis - PCA2

The second principal component increases with only one of the values, decreasing Health. This component can be viewed as a measure of how unhealthy the location is in terms of available health care including doctors, hospitals, etc.

Third Principal Component Analysis - PCA3

The third principal component increases with increasing Crime and Recreation. This suggests that places with high crime also tend to have better recreation facilities.

To complete the analysis we often times would like to produce a scatter plot of the component scores.

In looking at the program, you will see a gplot procedure at the bottom where we are plotting the second component against the first component. 
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Each dot in this plot represents one community. So if you were looking at the red dot out by itself to the right. This particular dot has a very high value for the first principal component and we would expect this community to have high values for the Arts, Health, Housing, Transportation and Recreation. Whereas if you looked at red dot at the left of the spectrum, you would expect to have low values for each of those variables.

Looking at the top dot in blue, this has a high value for the second component. So what you would expect that this community would be lousy for Health. And conversely if you were to look at the blue dot on the bottom, this community would have high values for Health.

Further analyses may include:

· Scatter plots of principal component scores. In the present context, we may wish to identify the locations of each point in the plot to see if places with high levels of a given component tend to be clustered in a particular region of the country, while sites with low levels of that component are clustered in another region of the country.

· Principle components are often treated as dependent variables for regression and analysis of variance. 

Alternative: Standardize the Variables

In the previous example we looked at principal components analysis applied to the raw data. In our discussion of that analysis we noted that if the raw data is used in the analysis, principal component analysis will tend to give more emphasis to those variables that have higher variances than to those variables that have very low variances. What in affect is going to happen is the results of the analysis will depend on what units of measurement are used to measure each variable. What this means is that A principal component analysis should only be used with the raw data if all variables have the same units of measure. And even in this case, only if you wish to give those variables which have higher variances more weight in the analysis.

A unique example of this type of implementation might be in an ecological setting where you are looking at counts of numbers of individuals of different species of organisms at a number of different sample sites. Here, one may want to give more weight to the more common species that are observed. By doing the analysis on the raw data you will tend to find the more common species will also show the higher variances and will be given more emphasis. If you were to do a principal component analysis on standardized counts, all species would be weighted equally regardless of how abundant they are and hence, you may find some very rare species entering in as significant contributors in the analysis. This may or may not be desirable. These types of decisions need to be made with the scientific foundation and questions in mind.

Summary

· The results of principal component analysis depend on the scales at which the variables are measured.

· Variables with the highest sample variances will tend to be emphasized in the first few principal components. 

· Principal component analysis using the covariance function should only be considered if all of the variables have the same units of measurement.

If the variables either have different units of measurement (i.e., pounds, feet, gallons, etc), or if we wish each variable to receive equal weight in the analysis, then the variables should be standardized before a principal components analysis is carried out. Standardize the variables by subtracting the mean from that variable and dividing by its standard deviation: 
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where

· Xij = Data for variable j in sample unit i
· [image: image722.png]


= Sample mean for variable j 

· sj = Sample standard deviation for variable j
We will now perform the principal component analysis using the standardized data.

Note: the variance-covariance matrix of the standardized data is equal to the correlation matrix for the unstandardized data. Therefore, principal component analysis using the standardized data is equivalent to principal component analysis using the correlation matrix.

Principal Component Analysis Procedure

The principal components are first calculated by obtaining the eigenvalues for the correlation matrix:
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In this matrix we will denote the eigenvalues of of the sample correlation matrix R, and the corresponding eigenvectors 
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Then the estimated principle components scores are calculated using formulas similar to before, but instead of using the raw data we will use the standardized data in the formulae below:
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Example: Places Rated Data 

The SAS program places1.sas will implement the principal component procedures using the standardized data:
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The output begins with descriptive information including the means and standard deviations for the individual variables being presented.

This is followed by the Correlation Matrix for the data. For example, the correlation between the housing and climate data was only 0.273. There are no hypothesis presented that these correlations are equal to zero. We will use this correlation matrix instead to obtain our eigenvalues and eigenvectors.

The part we need to focus on first are the eigenvalues of the correlation matrix that correspond to each of the principal components. In this case, total variation of the standardized variables is going to be equal to p, the number of variables. When you standardized the variables this means that each variable will have variance equal to one, and the total variation is the sum of these variations, in this case the total variation will be 9.

The eigenvalues of the correlation matrix are given in the second column in the table below the correlation matrix and have also been copied into the lesson below.

What is also relevant is the proportion of variation explained by each of the principal components, as well as the cumulative proportion of the variation explained. 

Step 1

Examine the eigenvalues to determine how many principal components should be considered: 

	Component
	Eigenvalue
	Proportion
	Cumulative

	1
	3.2978
	0.3664 
	0.3664 

	2
	1.2136
	0.1348 
	0.5013

	3
	1.1055
	0.1228 
	0.6241

	4
	0.9073
	0.1008 
	0.7249 

	5
	0.8606
	0.0956 
	0.8205

	6
	0.5622 
	0.0625
	0.8830

	7
	0.4838
	0.0538
	0.9368

	8
	0.3181
	0.0353
	0.9721

	9
	0.2511 
	0.0279
	1.0000 


The first principal component explains about 37% of the variation. Furthermore, the first four principal components explain 72%, while the first five principal components explain 82% of the variation. This analysis is going to require a larger number of components to explain the same amount of variation as the original analysis using the variance-covariance matrix. This is not unusual. 

In most cases, there has been a decision that has been made previously where the required cut off is specified, or how much of the variation you wish to explain. For instance, I might state that I would be satisfied if I could explain 70% of the variation. If we do this then we would select the components necessary until you get up to 70% of the variation. This would be one approach. This type of judgment is arbitrary and hard to make if you are not experienced with these types of analysis. The goal - to some extent - also depends on the type of problem at hand.

A third approach would be to plot the differences between the ordered values and look for a break or a sharp drop. The only sharp drop that is noticeable in this case is after the first component. One might, based on this, select only one component. However, one component is probably too few, particularly because we have only explained 37% of the variation. It remains an arbitrary decision.

Step 2

Next, we can compute the principal component scores using the eigenvectors. This is a formula for the first principal component: 
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And remember, this is now going to be a function, not of the raw data but the standardized data.

The magnitudes of the coefficients give the contributions of each variable to that component. Since the data have been standardized, they do not depend on the variances of the corresponding variables.

Step 3

Next, we can look at the coefficients for the principal components. In this case, since the data are standardized, within a column the relative magnitude of those coefficients can be directly assessed. Each column here corresponds with a column in the output of the program labeled Eigenvectors.

	
	Principal Component 

	Variable
	1
	2
	3
	4
	5

	Climate
	0.158
	0.069
	0.800
	0.377
	0.041

	Housing
	0.384
	0.139
	0.080
	0.197
	-0.580

	Health
	0.410
	-0.372
	-0.019
	0.113
	0.030

	Crime
	0.259
	0.474
	0.128
	-0.042
	0.692

	Transportation
	0.375
	-0.141
	-0.141
	-0.430
	0.191

	Education
	0.274
	-0.452
	-0.241
	0.457
	0.224

	Arts
	0.474
	-0.104
	0.011
	-0.147
	0.012

	Recreation
	0.353
	0.292
	0.042
	-0.404
	-0.306

	Economy
	0.164
	0.540
	-0.507
	0.476
	-0.037


Interpretation of the principal components is based on finding which variables are most strongly correlated with each component. In other words, we need to decide which numbers are large within each column. In the first column we will decide that Health and Arts are large. This is very arbitrary. Other variables might have also been included as part of this first principal component.

Component Summaries

First Principal Component Analysis - PCA1

The first principal component is a measure of the quality of Health and the Arts, and to some extent Housing, Transportation and Recreation. Health increases with increasing values in the Arts. If any of these variables goes up, so do the remaining ones. They are all positively related as they all have positive signs.

Second Principal Component Analysis - PCA2

The second principal component is a measure of the severity of crime, the quality of the economy, and the lack of quality in education. Crime and Economy increase with decreasing Education. Here we can see that cities with high levels of crime and good economies also tend to have poor educational systems.

Third Principal Component Analysis - PCA3

The third principal component is a measure of the quality of the climate and poorness of the economy. Climate increases with decreasing Economy. The inclusion of economy within this component will add a bit of redundancy within our results. This component is primarily a measure of climate, and to a lesser extent the economy.

Fourth Principal Component Analysis - PCA4

The fourth principal component is a measure of the quality of education and the economy and the poorness of the transportation network and recreational opportunities. Education and Economy increase with decreasing Transportation and Recreation. 

Fifth Principal Component Analysis - PCA5

The fifth principal component is a measure of the severity of crime and the quality of housing. Crime increases with decreasing housing.

Once the Components Have Been Calculated

One can interpret these component by component. One method of choosing how many components to include is to include only those that give me unambiguous results, i.e., where no variable appears in two different columns as a significant contribution. 

The thing to remember with all of this is that what we are really after here is a description of the data. The primary purpose of this analysis is descriptive - it is not hypothesis testing! So your decision in many respects needs to be made based on what provides you with a good, concise description of the data. 

We have to make a decision as to what is an important correlation, not from a statistical hypothesis testing perspective, but from, in this case an urban-sociological perspective. You have to decide what is important in the context of the problem at hand. This decision may differ from discipline to discipline. In some disciplines such as sociology and ecology the data tend to be inherently 'noisy', and in this case you would expect 'messier' interpretations. If you are looking in a discipline such as engineering where everything has to be precise, you might put higher demands on the analysis. You would want to have very high correlations. Principal components analysis are mostly implemented in sociological and ecological types of applications.

As before, you can plot the principal components against one another and we can explore where the data for certain observations lies.

Sometimes the principal components scores will be used as explanatory variables in a regression. Sometimes in regression settings you might have a very large number of potential explanatory variables to work with. And you may not have much of an idea as to which ones you might think are important. What you might do is to perform a principal components analysis first and then perform a regression predicting the variables enters from the principal components themselves. The nice thing about this analysis is that the regression coefficients will be independent to one another, since the components are independent of one another. In this case you actually say how much of the variation in the variable of interest is explained by each of the individual components. This is something that you can not normally do in multiple regression. 

One of the problems that we have with this analysis is that because of all of the numbers involved, the analysis is not as 'clean' as one would like. For example, in looking at the second and third components, the economy is considered to be significant for both of those components. As you can see, this will lead to an ambiguous interpretation in our analysis. 

The next topic that we will examine is Factor Analysis. One of the objectives of factor analysis will be to use the factor rotations in order to reduce the complexity and obtain a cleaner interpretation of the data.

Summary

In this lesson we learned about: 

· The definition of a principal components analysis;

· How to interpret the principal components;

· How to select the number of principal components to be considered;

· How to choose between doing the analysis based on the variance-covariance matrix or the correlation matrix

Lesson 16: Factor Analysis

Introduction

Factor Analysis has two primary motivations. The first motivation stems from the work we just completed in the previous lesson, i.e., the interpretation of principal components is often not very clean. A particular variable may on occasion, contribute significantly to more than one of the components. Ideally we like to each variable to contribute significantly to only one component. So one of the purposes of factor analysis is to try and clean up the interpretation of the data using something called factor rotation. In the analysis of the Places Rated Data, for example, Economy is correlated with the second, third, and fourth components. Keeping the total amount of variation explained by the first k components fixed, further rotations of the axes might be performed to improve the interpretation of each component. 

The primary motivation for factor analysis has to do with the notion that the data that you observe are somehow a function of some smaller number of unobserved variables called factors , that cannot be measured directly. 

Examples of fields in which factor analysis is involved include physiology, health, intelligence, sociology, and sometimes ecology and other fields. The idea here is that these underlying variables, in some sense, have 'nebulous' definitions. For instance, consider the term 'physiological health'. What is this? Is it your heart rate? Is it your blood glucose? The same is true for a term like 'intelligence'. How do you measure intelligence? There are any number of ways that you might consider measuring this. Often what we try to do is to indirectly measure these and then use factor analysis to somehow get at a more direct measurement of the variables of interest. 

Factor Analysis will be illustrated using the Places Rated data. Factor Analysis involves the notion that there are some unobserved factors that can not be readily measured. In this case we will assume that there are m unobserved factors that explain the variation in our data. What we will do is write a series of p multiple regression models predicting the observed data for each of our p variables as a linear function of our m unobserved common factors plus an error call the specific factor. What we are hoping for is a significant dimension reduction as in the case when m would be small. For example, building a model with as few factors as possible. 

We also notice that under this model we also obtain a more parsimonious model for the variance-covariance matrix where the variance-covariance matrix is going to be equal to a function of the factor loading L , and the matrix of the specific factors Ψ. Here, L contains the regression coefficients for all of those multiple regression models predicting the observed data from the unobserved factors. We should also note, that just as in the case of principal components analysis, factor analysis usually will be performed with standardized data. Here, we will standardize the data before the analysis is carried out. This is the default setting in SAS. Using standardized data, we will replace the variance-covariance matrix with the correlation matrix in this example. 

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Understand the terminology of factor analysis, including the interpretation of factor loadings, specific variances, and communalities; 

· Understand how to apply both principle component and maximum likelihood methods for estimating the parameters of a factor model; 

· Understand factor rotation, and interpret rotated factor loadings. 



The Objective of Factor Analysis

To describe the relationship between a large number of measured traits and a small number of unobserved factors.

Notation

What we will do here is collect all of the variables X 's into a vector X for each individual subject. Let Xi denote observable trait i. These are the data from each subject, and will be collected into a vector of traits. 
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= vector of traits

This will be a random vector, with a population mean. We shall assume that vector of traits X is sampled from a population with population mean vector:
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= population mean vector

Here, E( Xi ) = µi denotes the population mean of variable i. 

The factors themselves f1 , f2 , ..., fm are also called common factors . So, fi is the ith common factor. Note that the common factors are not observable. Here we have m common factors. Generally, m is going to be selected to be less than p - generally substantially less than p . 

The common are also collected into a vector, in this case a number m of common factors. 
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= vector of common factors

Model
Our factor model can be thought of a series of multiple regressions, predicting each of the observable variables Xi from the values of the unobservable common factors fi : 
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Here, the variable means μ1 through μp can be regarded as the intercept terms for the multiple regression models. 

The regression coefficients lij (the partial slopes) for all of these multiple regressions are called factor loadings . Here, lij = loading of the ith variable on the jth factor. These will be collected into a matrix as shown here: 
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= matrix of factor loadings

And finally, the errors εi are called the specific factors. Here, εi = specific factor for variable i . The specific factors are also collected into a vector: 
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= vector of specific factors

In summary, the basic model is going to look a bit like a regression model. Each of our response variables X is going to be written as a multiple regression, predicting each X variable as a linear function of the unobserved common factors . All these equations are are multiple regressions, but where the explanatory variable are our unobserved factors f1 , f2 through fm . Thus, our explanatory variables are f1 , f2 through fm . Therefore, here we are going to say that we have m unobserved factors that control the variation among our data. 

We will generally reduce this into matrix notation as shown in this form here:
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Note: In general we want m << p. 



Assumptions

We have a fairly lengthy list of assumptions associated with factor analysis and here we will group them by mean, variance and correlation.

Mean

1. The specific factors or errors all have mean zero: [image: image735.png]


We assume that these errors are random. So they will have a mean and the mean we will assume will be zero here.

2. The common factors, the f's, have mean zero: [image: image736.png]E(fi)y=0:i=1.2,




All of the unobserved explanatory variables will have a mean of zero.

A consequence of these assumptions is that the mean response of the jth trait is μi.  That is, 

E( Xi) = μi. 

Variance

1. The common factors have variance one: [image: image737.png]


These unobserved common factors are all assumed to have a variance of one.

2. The variance of specific factor i is ψi: [image: image738.png]var(ei) = yii



Or, the errors or specific factors are assumed to have variances, ψi, for the ith specific factor. Here, ψi is called the specific variance. 

Correlation

1. The common factors are uncorrelated with one another: [image: image739.png]



2. The specific factors are uncorrelated with one another: [image: image740.png]cov(ei.g) = 0fori+j=12.





3. The specific factors are uncorrelated with the common factors: [image: image741.png]



These assumptions are necessary because in this case if we do not add these constraints to our model it is not possible to uniquely estimate any of the parameters. You could get an infinite number of equally well fitting models with different values for the parameters unless we add these constraints if these assumptions are not made. 



Results

1. Under this model the variance for the ith observed variable is going to be equal to the sum of the squared loadings for that variable: 

The variance of trait i is: [image: image742.png]o} =
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This is a derivation that can be made based on the previous assumptions. 

a. [image: image743.png]>
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= Communality for variable i - the sum of the squared loadings. Later on we will see how this is a measure for how well the model performs for that particular variable. The larger the communality, the better the model performance for the ith variable.

b. ψi = Specific Variance 

2. The covariance between pairs of traits i and j is: [image: image744.png]oy = cov(Xi X)) = Y lalje

=y



- this looks at the covariance here between two variables

3. The covariance between trait i and factor j is: [image: image745.png]cov(Xnf) = Iy



- as given by the factor loading lij
In matrix notation, our model for the variance-covariance matrix is going to be expressed as shown below: 

[image: image746.png]T=LL +¥,




This is the matrix of factor loadings times its transpose, plus a diagonal matrix containing the specific variances. 

Here Ψ equals:

[image: image747.png]



So this produces a model for the variance-covariance matrix and it is this model that is used to do the estimation. We are assuming that what we end up with, based on all of these results, is a model for the variance-covariance matrix. This is a simplified model which will hopefully contain fewer parameters than we would normally have in a variance-covariance matrix. Therefore, this is a more parsimonious model of the variance-covariance matrix. 

Notes:

1. The model assumes that the data is a linear function of the common factors. However, since the common factors are not observable, there is no amount of data that can be used to check for linearity. 

2. We have to remember that the variance-covariance matrix is a symmetric matrix, that is the variance between variables i and j is the same thing as the variance between j and i . For this model: 

[image: image748.png]T=LL+¥,




The variance-covariance matrix is going to have p(p +1)/2 unique elements of Σ which are approximated by:

· mp factor loadings in the matrix L , and 

· p specific variances 

This means that there is going to be mp plus p parameters in this model of the variance-covariance matrix. What we want is a parsimonious model where m is small. The simpler interpretation is going to be a case where m is small. And, ideally mp + p is going to be substantially smaller than p(p +1)/2 . However, is mp is too small, the mp + p parameters may not be adequate to describe Σ - the variance-covariance matrix. The other thing that might be going on here is that perhaps this is not the right model. Maybe you can not reduce the data to a linear combination of factors.

3. If we have more that one variable in our analysis, that is if p > 1, the model is going to be inherently ambiguous. The way we can see this is through the use of orthogonal matrixes. Let T be any n x m orthogonal matrix ; that is, if you take the matrix transpose times itself you get back the identity matrix I . Or, if you take the matrix times its transpose you also get back an identity matrix. You have an orthogonal matrix if its inverse is equal to the transpose of the original matrix. 

[image: image749.png]



Then we can write our factor model in matrix notation:

[image: image750.png]=p+LITf+e=p+L'f"+e




Note that I can always place the identity matrix between the L and the f, as in the third expression above . This does not change the calculation since the identity matrix times any matrix just gives back the original matrix. This results in an alternative factor model, where the relationship between the new factor loadings and the original factor loadings is:

[image: image751.png]LT




and the relationship between the new common factors and the original common factors is: 

[image: image752.png]=Tt




This gives a model that fits equally well. Moreover, since there are an infinite number of orthogonal matrices, then there is an infinite number of alternative models. This model, as it turns out, it satisfies all of the assumptions that we discussed earlier. 

Note:
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and 
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So f* satisfies all of the assumptions, and hence f* is an equally valid collection of common factors. So, there is a certain apparent ambiguity to these models, however, it is the same ambiguity that we are going to exploit. This ambiguity is going to be used to justify the factor rotation we will use later to obtain to more parsimonious description of the data.



We shall consider two different methods for estimating the parameters of a factor model: 

· Principal Component Method

· Maximum Likelihood Estimation 

A third method, principal factor method, is also available but will not be considered in this class. First, we will look at the principal component method. 

Principal Component Method 

We will use our usual notation as follows:

A vector of observations for ith subject. Here we are collecting the values for that subject's p variables into a vector as usual:

[image: image755.png]



S will be used to denote our sample variance-covariance matrix and is expressed as:

[image: image756.png]



We will have p eigenvalues for this variance-covariance matrix as well as corresponding eigenvectors for this matrix.

 

Eigenvalues of S (R):

[image: image757.png]



Eigenvectors of S (R): 
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Earlier when we talked about principal component analysis you might recall that we noted that the variance-covariance matrix can be re-expressed in the following form as a function of the eigenvalues and the eigenvectors: 

Spectral Decomposition of Σ. 
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We can express the variance-covariance matrix as the sum of our p eigenvalues λi multiplied by their eigenvectors ei and their transposes. The idea behind the principal component method is to approximate this expression. Instead of summing from 1 to p , now we would sum it from 1 to m instead, ignoring the last p - m terms in the sum, to obtain the third expression. We can rewrite this as shown in the fourth expression, which is used to define the matrix of factor loadings L , yielding the final expression in matrix notation. 

(Note: If standardized measurements are used, we replace S by the sample correlation matrix R.)

This yields the following estimator for the factor loadings: 

[image: image760.png]



In summary, we have collected our eigenvectors into a matrix, but for each column of the matrix we will multiply it by the square root of the corresponding eigenvalue. This will now form our matrix L of factor loading in the factor analysis. This is followed by the transpose of L . This result yields the above estimator for the ijth factor loading, which models the effect of the jth factor on the ith variable. We are going to estimate that by taking eij , the jth element of the ith eigenvector times the square root of the ith eigenvalue.

To estimate our specific variances, recall that our factor model for the variance-covariance matrix is 

[image: image761.png]T=LL +¥




in matrix notation. Ψ is now going to be equal to the variance-covariance matrix minus LL'.

[image: image762.png]¥=3x-LL'




This in turn suggests that the specific variances, which are the diagonal elements of this matrix Ψ can be estimated using this expression:
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Here, we take the sample variance for the ith variable and subtract from that, the sum of the squared factor loadings (i.e., the communality). 



Example: Places Rated Data - Principal Component Method

As a reminder of what this dataset involves, the Places Rated Almanac (Boyer and Savageau) rates 329 communities according to nine criteria: 

1. Climate and Terrain

2. Housing

3. Health Care &Environment 

4. Crime 

5. Transportation

6. Education 

7. The Arts 

8. Recreation 

9. Economic

Except for housing and crime, the higher the score the better. For housing and crime, the lower the score the better. 

Our objective here is to describe the inter-relationships among the variables. 

The first thing that you should do before carrying out a factor analysis is to determine what m is. How many common factors do you want to include in your model? This requires a determination of how may parameters are going to be involved. 

For p = 9, the variance-covariance matrix Σ contains 

[image: image764.png]



unique elements or entries in the variance-covariance matrix. For a factor analysis with m factors, the number of parameters in the factor model is equal to 

[image: image765.png]pm+1)=9m+1)




Taking m = 4, we have 45 parameters in the factor model, this is equal to the number of original parameters, This would result in no dimension reduction. So in this case, we will select m = 3, yielding 36 parameters in the factor model and thus a dimension reduction in our analysis.

What is also often done is to look at the results of the principal components analysis. Below you can see the output from the SAS program places1.sas that we looked at in the previous lesson. The first three components explain 62% of the variation. We will consider this to be sufficient for the current example. So, future analyses will be based on three components.

	Component
	Eigenvalue
	Proportion
	Cumulative

	1
	3.2978
	0.3664
	0.3664

	2
	1.2136
	0.1348
	0.5013

	3
	1.1055
	0.1228
	0.6241

	4
	0.9073
	0.1008 
	0.7249

	5
	0.8606
	0.0956
	0.8205

	6
	0.5622
	0.0625
	0.8830

	7
	0.4838
	0.0538
	0.9368

	8
	0.3181
	0.0353
	0.9721

	9
	0.2511
	0.0279
	1.0000


So, what is often done here is to select m so that we are explaining a sufficient amount of variation in the data.  What is meant by sufficient depends on the example at hand. 

A third approach to sometimes use, often in social sciences, is to look at the theory within the field of study for indications of how many factors to expect. In Psychology, for example, a circumplex model suggests that mood has two factors: positive affect and arousal. So a two factor model may be considered for questionnaire data regarding the subjects' moods.  In many respects this is a better approach because then you are letting the science to drive the statistics rather than the statistics to drive the science! If you can, use your scientific understanding to determine how many factors should be included in your model. 

The factor analysis is being carried out using places2.sas as shown below:

[image: image766.png]options 1s=78;
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Initially we will want to look at the factor loadings. These factor loadings are obtained by using this expression
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Here,  the elements of the eigenvector are multiplied times the corresponding eigenvalue. These are available in the table on page 4 of the output, and are summarized in the Table below. These are only recorded for the first three factors since these were all the factors we asked for. 

Below, we have the following factor loadings from the SAS output. We should also not that these factor loadings are also the correlations between the factors and the corresponding variables. For example, the correlation between the Arts and the first factor is about 86%. Similarly the correlation between climate and that factor is only about 28%. 

	
	Factor

	Variable
	1
	2
	3

	Climate
	0.286
	0.076
	0.841

	Housing
	0.698
	0.153
	0.084

	Health
	0.744
	-0.410
	-0.020

	Crime
	0.471
	0.522
	0.135

	Transportation
	0.681
	-0.156
	-0.148

	Education
	0.498
	-0.498
	-0.253

	Arts
	0.861
	-0.115
	0.011

	Recreation
	0.642
	0.322
	0.044

	Economics
	0.298
	0.595
	-0.533


Interpretation for factor loadings is similar to interpretation of coefficients for principal component analysis. We want to have some criterion which helps us determine which of these are large and which of these are considered to be negligible. This, again, is something of an arbitrary choice. Above, we have place the values that we have considered large in boldface, using about .5 as the cutoff. Based on this determination we will make the following statements: 

1) As Arts increases so does Health, Housing, Recreation and to a lesser extent Crime and Education. In fact, when making this kind of statement it is not a bad idea to give some indication of how strong these effects are. So, in this case you can that this is primarily a measure of the Arts since about 86% of this variation in this first factor or equivalently the first principal component is explained by the Arts. 

2) Factor 2 is primarily related to Crime, Education and Economics. Here we can see as Crime and Economics increase, Education decreases. Therefore, the lower the level of the Education, the higher level of Crime but the better the Economy. 

3) For factor 3 primarily a measure of Climate. We can see that Climate is negatively related to Economics. Therefore, the better the climate the poorer the economy. 

The interpretation that you would make here is very much the same as you would make for principal component analysis. 



Communalities

The communalities for the ith variable are computed by taking the sum of the squared loadings for that variable. This is expressed below:

[image: image770.png]



To understand the computation of communulaties, recall the table of factor loadings:

	
	Factor

	Variable
	1
	2
	3

	Climate
	0.286
	0.076
	0.841

	Housing
	0.698
	0.153
	0.084

	Health
	0.744
	-0.410
	-0.020

	Crime
	0.471
	0.522
	0.135

	Transportation
	0.681
	-0.156
	-0.148

	Education
	0.498
	-0.498
	-0.253

	Arts
	0.861
	-0.115
	0.011

	Recreation
	0.642
	0.322
	0.044

	Economics
	0.298
	0.595
	-0.533


For example, to compute the communality for Climate, the first variable, we square the factor loadings for climate (given in bold-face in the table above) then add the results: 
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The communalities of the 9 variables can be obtained from page 4 of the SAS output as shown below: 

[image: image772.png]Final Connunality Estinates: Total = 5.616885

clinate housing health erine trans

0.78500707 0.51783185 0.72230182 0.51244913 0.50977159
educate arts recreate econ

0.56073895 0.75382091 0.51725940 0.72770402




5.616885, (located just above the individual communalities), is the "Total Communality".

In summary, the communalities are copied from the SAS output and placed into a table here:

	Variable
	Communality

	Climate
	0.795

	Housing
	0.518

	Health
	0.722

	Crime
	0.512

	Transportation
	0.510

	Education
	0.561

	Arts
	0.754

	Recreation
	0.517

	Economics
	0.728

	Total
	5.617


You can think of these values as multiple R2 values for regression models predicting the variables of interest from the 3 factors. The communality for a given variable can be interpreted as the proportion of variation in that variable explained by the three factors. In other words, if we perform multiple regression of climate against the three common factors, we obtain an R2 = 0.795, indicating that about 79% of the variation in climate is explained by the factor model. The results suggest that the factor analysis does the best job of explaining variation in climate, the arts, economics, and health. 

One assessment of how well this model is doing can be obtained from the communalities. What you want to see is values that are close to one. This would indicate that the model explains most of the variation for those variables. In this case, the model does better for some variables than it does for others. The model explains Climate the best, and is not bad for other variables such as Economics, Health and the Arts. However, for other variables such as Crime, Recreation, Transportation and Housing the model does not do a good job, explaining only about half of the variation. 

If you take all of the communality values and add them up you can get a total communality value: 
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Here, the total communality is 5.617. The proportion of the total variation explained by the three factors is 

[image: image774.png]0.624




This gives us the percentage of variation explained in our model. This might be looked at as an overall assessment of the performance of the model. However, this percentage is the same as the proportion of variation explained by the first three eigenvalues, obtained earlier. The individual communalities tell how well the model is working for the individual variables, and the total communality gives an overall assessment of performance. These are two different assessments that you can use. 

Since the data are standardized in this case, the variance for standardized data is going to be equal to one. Then the specific variances can be computed by subtracting the communality from the variance as expressed below: 
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Recall, that the data were standardized before analysis, so the variances of the standardized variables are all equal to one. For example, the specific variance for Climate is computed as follows: 
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These specific variance can be found in the SAS output as the diagonal elements in the table on page 5 as seen below: 
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For example, the specific variance for housing is 0.482.

This model will have some errors and the errors have to do with the fact that this model only provides an approximation to the correlation matrix. Of course, there can be errors in the data that could also produce these as well. The residuals are obtained from the following calculation: 
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Basically it is the difference between R and LL' , or the correlation between variables i and j minus the expected value under the model. Generally, these residuals should be as close to zero as possible and can also be found in the SAS output in the table on page 5 (above). For example, the residual between Housing and Climate is -0.00924 which is pretty close to zero. However, there are some that are not very good. The residual between Climate and Economy is 0.217 These values also give an indication of how well the factor model fits the data.

One disadvantage of the principal component method does not provide a test for lack-of-fit. We can examine these numbers and determine if we think they are small or close to zero, but we really do not have a test for this. Such a test is available, however, for the maximum likelihood method. 



Final Notes about the Principal Component Method 

Unlike the competing methods, the estimated factor loadings under the principal component method do not change as the number of factors is increased. This is not true of the remaining methods (e.g., maximum likelihood). However, the communalities and the specific variances will depend on the number of factors in the model. In general, as you increase the number of factors, the communalities increase towards one and the specific variances will decrease towards zero. 

The diagonal elements of the variance-covariance matrix S (or R) are equal to the diagonal elements of the model that we have used for it:
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but the off-diagonal elements are not exactly reproduced. This will in part be due to variability in the data - just random chance. Therefore, what we want to do is select the number of factors so as to make the off-diagonal elements of the residual matrix small: 
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Here, we have a trade-off between two conflicting desires. For a parsimonious model, we wish to select the number of factors m to be as small as possible, but for such a model, the residuals could be large. Conversely, by selecting m to be large, we may reduce the sizes of the residuals but at the cost of producing a more complex and less easily interpreted model (there are more factors to interpret). 

Another result that we should note is that the sum of the squared elements of the residual matrix is equal to sum of the squared values of the eigenvalues left out of the matrix. 
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General Methods used in determining number of Factors

Below are three common techniques used to determine the number of factors to be extracted:

1. Cumulative proportion of at least 0.80 (or 80% explained variance)

2. Eigenvalues of at least one

3. Scree plot based on the "elbow" of the plot; that is, where the plot turns and begins to flatten out.



Maximum Likelihood Estimation Method

Assumption

As was indicated earlier Maximum Likelihood Estimation requires that we assume that the data are sampled from a multivariate normal distribution. This is going to be a drawback to this method. If you have data collected on a Likert scale, which is most often the case in the social sciences, these kinds of data can not really be normally distributed, since they are discrete and bounded. 

Using the Maximum Likelihood Estimation Method we must assume that the data are independently sampled from a multivariate normal distribution with mean vector µ and variance-covariance matrix that takes this particular form: 
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where L is the matrix of factor loadings and ψ is the diagonal matrix of specific variances. 

To use this, we are going to have to use some extra notation: As usual, the data vectors for n subject will be represented as shown: 
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Maximum likelihood estimation involves estimating the mean, the matrix of factor loadings, and the specific variance. 

The maximum likelihood estimator for the mean vector μ, the factor loadings L and the specific variances ψ are obtained by finding [image: image784.png]
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, and [image: image786.png]


that maximizes the log likelihood, which is given by the following expression:

[image: image787.png]i S ' ' 1
(nL¥) = -2 log2r - ZloglLL' +¥ 7%;(&—“) (LL' +¥) ' (Xi—n)




What we are looking at is the log of the joint probability distribution of the data among all of the subjects and we want to maximize this quantity. We want to find the values of the parameters, (μ, L, and ψ), that the most compatible with what we see in the data. As was noted earlier was that the solutions for these factor models are not unique. Equivalent models can obtained by rotation. So there is an additional condition that is going to be required, and that is that this particular matrix, [image: image788.png]


, is a diagonal matrix. This latter condition is required in order to obtain a unique solution.

Computationally this process is complex. In general, there is no closed-form solution to this maximization problem. So iterative methods must be applied. Implementation of iterative methods can run into problems, as we will see later. 



Example: Places Rated Data

This method of factor analysis is being carried out using places3.sas as shown below:

[image: image789.png]options 1s=78;
title "Factor Analysis - Meximum Likelihood - Places Rated”;
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Here we have specified the Maximum Likelihood Method by setting method=ml. Again, we need to specify the number of factors.

You will notice that this program is missing the "hey" option. We will start out without this option to see what type of error may occur here, and how it may be remedied. This is something that could very easily happen with your own data analysis. 

For m = 3 factors, maximum likelihood estimation fails to converge. An examination of the records of each iteration reveals that the communality of the first variable (climate) exceeds one during the first iteration. Since the communality must lie between 0 and 1, this is the cause for failure. 

We have to fix this. SAS provides a number of different fixes for this kind of error. Most of these fixes have to do with the initial guess for the communalities; that is, changing the starting values for the communalities. 

Remedies
1. Attempt adding a priors option to the procedure, setting an initial guess for the communalities. Available priors include: 

· priors=smc: Sets the prior communality of each variable proportional to the R 2 of that variable with all other variables as an initial guess. 

· priors=asmc: As above, but an adjustment is made so that the sum of the communalities is equal to the maximum of the absolute correlations. 

· priors=max: Sets the prior communality of each variable to the maximum absolute correlation within any other variable. 

· priors=random: Sets the prior communality of each variable to a random number between 0 and 1. 

The idea here is that if we start out with better starting values then we might have better luck at convergence. Unfortunately in trying each of these options, (including running the random option multiple times), we find that these options are ineffective for our Places Rated Data case. The second option needs to be considered. 

2. Attempt adding the "hey" (Heywood) option to the procedure. This sets communalities greater than one back to one, allowing iterations to proceed. In other words, if the communality value falls out of bounds, then it will be replaced by a value of one. This will always yield a solution, but frequently the solution will not adequately fit the data. 

We start with the same values for the communalities and then at each iteration we obtain new values for the communalities given. The criterion is a value that we are trying to minimize in order to obtain our estimates. We can see that the convergence criterion decreases with each iteration of the algorithm. 
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You can see in the second iteration that rather than report a communality greater than one, it replaces it with the value one and then proceed as usual through the iterations. 

We find that after five iterations the algorithm converges, as indicated by the statement on the second page of the output. 

It has converged to a setting where the communalities for the first variable Climate is equal to one. 



Goodness-of-Fit 

Before we proceed, we would like to determine if the model adequately fits the data. Therefore, what we want here is a goodness-of-fit test. 

The goodness-of-fit test comparing the variance-covariance matrix under this model to the variance-covariance matrix under the assumption that the variances and covariances can take any values. The variance-covariance matrix under the model can be expressed as: 

Σ = L' L + Ψ
Where L is the matrix of factor loadings, and the diagonal elements of Ψ are equal to the specific variances. This is a very specific structure for the variance-covariance matrix to take. A more general structure would allow those elements to take any value. Therefore, what we will do with this goodness-of-fit test is compare the sets of two models, the factor model against the general model.

To assess goodness-of-fit, we use a Bartlett-Corrected Likelihood Ratio Test Statistic: 
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as part of the output from this program. You might remember Bartlett's test for homogeneity of the variance-covariance matrixes which we looked at earlier. It turns out that that test is also a likelihood ratio test. It also includes a so-called Bartlett's correction which is a constant. The log is the natural log. In the numerator is the fitted factor model for the variance-covariance matrix. In the numerator we have the determinant of the fitted factor model for the variance-covariance matrix, and below, we have a sample estimate of the variance-covariance matrix assuming no structure where: 
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and S is the sample variance-covariance matrix. This is just another estimate of the variance-covariance matrix which includes a small bias. If the factor model fits well then these two determinants should be about the same and you will get a small value for X2 . However, if the model does not fit well, then this will be a larger ratio, hence giving a large value for X2 . 

Under the null hypothesis that the factor model adequately describes the relationships among the variables,
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Under the null hypothesis, that the factor model adequately describes the data, this test statistic will have a chi square distribution with an unusual set of degrees of freedom as shown above. Actually, this degrees of freedom here is equal to the difference in the number of unique parameters in these two models. We reject the null hypothesis that the factor model adequately describes the data if X2 exceeds the critical values for the chi-square table. 

Back to the Output... Looking just past the iteration results, we have...
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For our Places Rated dataset, we find a significant lack of fit. (X2 = 92.67; d. f. = 12; p < 0.0001). We conclude that the relationships among the variables is not adequately described by the factor model. This suggests that we do not have the correct model.

The only real remedy that we can apply in this case is to increase the number m of factors until an adequate fit is achieved. Note, however, that m must satisfy 
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In the present example, this means that we the m ≤ 4. 

So, we can go back to the SAS program and change the "nfactors" value from 3 to 4 and run this change using the Places Rated data.

We find that the m = 4 factor model also does not fit the data adequately either. (X2 = 41.69; d.f. = 6; p < 0.0001).
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It appears that no factor model can be fit to describe this particular data. What we can surmise is that factor model just does not work with the particular dataset that we are looking at. There is something else going one here. Perhaps some non-linearity, but whatever the case, it does not look like this yields a good-fitting factor model. Sometimes, we can drop variables from the data set to obtain a better fitting model. 



Factor Rotations

It doesn't look like the factor model works well with this data and in general it is unusual to find a model that fits well. 

In looking back, we stated that there were two reasons for doing factor analysis. The first was to try to discern some underlying factors describing the data. The Maximum Likelihood Method suggests that we completely failed in trying to find such a model to describe the Places Rated data. The second reason still remains valid - we can still try to obtain a better interpretation of the data. In order to do this, let's take a look at the factor loadings that we obtained before from the principal component method. 

	
	Factor

	Variable
	1
	2
	3

	Climate
	0.286
	0.076
	0.841

	Housing
	0.698
	0.153
	0.084

	Health
	0.744
	-0.410
	-0.020

	Crime
	0.471
	0.522
	0.135

	Transportation
	0.681
	-0.156
	-0.148

	Education
	0.498
	-0.498
	-0.253

	Arts
	0.861
	-0.115
	0.011

	Recreation
	0.642
	0.322
	0.044

	Economics
	0.298
	0.595
	-0.533


The problem with this analysis is that some of the variables are highlighted in more than one column. For instance, Education appears as a significant to Factor 1 AND Factor 2. The same is true for Economics which appears with both Factors 2 AND 3. This does not provide a very clean, simple interpretation of the data. Ideally, each variable would appear only in one column as a significant contribution. 

We could imagine that we might get contradictory results. Looking at some of the observations, it is conceivable that we will find an observation that takes a high value on both Factors 1 and 2. If this occurred, a high value for Factor 1 would suggest that the communality has quality education, but the high value for Factor 2 suggests the opposite, that the community has poor education. 

Factor rotation is motivated by the fact that these factor models are not unique. To begin with, recall that factor model for the data vector, [image: image799.png]


, is a function of the mean μ, plus a matrix of factor loadings times a vector of common factors, plus a vector of specific factors.

Moreover, we should note that this is equivalent to a rotated factor model, [image: image800.png]X=p+L'f'+e



, where we have set [image: image801.png]LTandf =T'f



for some orthogonal matrix T where [image: image802.png]


. Note that there are an infinite number of possible orthogonal matrices, each corresponding to a particular factor rotation.

What we wish to do is find an appropriate rotation, defined through an orthogonal matrix T that yields the most easily interpretable factors. 

To understand this, consider a scatter plot of factor loadings. The orthogonal matrix T rotates the axes of this plot. Here, we wish to find a rotation such that each of the p variables has a high loading on only one factor. 

We will return to the places2.sas program to obtain a plot. In looking at the program, there are a number of options (marked in blue under proc factor) that we did not explain previously.
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One of the options above is labeled 'preplot'. We will use this to plot the values for factor 1 against factor 2. 

In the output these values are plotted, the loadings for factor 1 on the y-axis, and the loadings for factor 2 on the x-axis. 
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Similarly, we are plotting about 0.7 and 0.15 and plot the second variable, labeled with the letter B. As so forth...a letter on the plot for each corresponding variable. 

In addition, SAS provides plots of the other combinations of factors, factor 1 against 3 as well as factor 2 against 3. 

Three factors appear in this model so what we might think about is a three-dimensional plot of all three factors together. 

The selection of these orthogonal matrixes T corresponds to our rotation of these axis. Think about rotating the axis about the center. Each rotation will correspond to an orthogonal matrix T . What we want to do is rotate these so that we obtain a cleaner interpretation of the data. What we would really like to happen is to define new coordinate systems so that when we rotate everything that the points to fall close to the vertices (end points) of these new axes. 

If we were only looking at two factors we would like to find each of the plotted points to be located at the four tips (corresponding to all four directions) of the rotated axes. 

This is what rotation is about, taking the factor pattern plot and rotating the axes in such a way so that the points fall close to the axes. 



Varimax Rotation

Varimax rotation is the most common of the rotations that are available. This first involves scaling the loadings. We will scale the loadings by dividing them by the corresponding communality as shown below: 
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Here the loading of the ith variable on the jth factor after rotation, where [image: image807.png]


is the communality for variable i. What we want to do is to find the rotation which maximizes this quantity.

The Varimax procedure, as defined below, selects the rotation to find this maximum quantity:
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This is the sample variances of the standardized loadings for each factor, summed over the m factors. Our objective is to find a factor rotation that maximizes this variance. 

Returning to the options of the factor procedure (marked in blue): 
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"rotate" asks for factor rotation, and here we have specified the Varimax rotation of our factor loadings. 

"plot" asks for the same kind of plot that we were just looking at for the rotated factors. The result of our rotation is a new factor pattern which is given below (page 11 of SAS output): 

The result of our rotation is a new factor pattern which is given below: 
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Here is a copy of page 10 from the SAS output here. 
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At the top of page 10 of the output, above, we have our orthogonal matrix T . The values of these rotated factor loadings in the SAS Output we have copied the here: 

	
	Factor

	Variable
	1
	2
	3

	Climate
	0.021
	0.239
	0.859

	Housing
	0.438
	0.547
	0.166

	Health
	0.829
	0.127
	0.137

	Crime
	0.031
	0.702
	0.139

	Transportation
	0.652
	0.289
	-0.028

	Education
	0.734
	-0.094
	-0.117

	Arts
	0.738
	0.432
	0.150

	Recreation
	0.301
	0.656
	0.099

	Economics
	-0.022
	0.651
	-0.551


Here we want to look at this new set of values to see if we can interpret the data based on the rotation. We have highlighted the values that are large in magnitude and from this we can make the following interpretation. Note that the interpretation is much cleaner than that of the original analysis. 

· Factor 1: primarily a measure of Health, but also increases with increasing scores for Transportation, Education, and the Arts. As each of these variables increase, so do the other three. 

· Factor 2: primarily a measure of Crime, Recreation, and the Economy. As one variable increases, so do the other two.

· Factor 3: primarily a measure of Climate alone . 

This is just the pattern that exists in the data and no causal inferences should be made from this interpretation. It does not tell us why this pattern exists. It could very well be that there are other essential factors that are not seen at work here. 

Let's look at the amount of variation explained by our factors under this rotated model and what it looked like under the original model. Consider, here, the variance explained by each factor under the original analysis and the rotated factors: 

	
	Analysis

	Factor
	Original
	Rotated

	1
	3.2978 
	2.4798

	2
	1.2136
	1.9835

	3
	1.1055 
	1.1536 

	Total
	5.6169
	5.6169


The total amount of variation explained by the 3 factors remains the same. The total amount of the variation explained by both models is identical. Rotations, among a fixed number of factors, does not change how much of the variation is explained by the model. We get equally good fit regardless of what rotation is used. 

However, notice what happened to the first factor. Here you see a fairly large decrease in the amount of variation explained by the first factor. This shows what is happening here. We obtained a cleaner interpretation of the data but you can't do it without it costing us something somewhere. What it has done here is to take the variation explained by the first factor and distributes it among the latter two factors, in this case mostly to the second factor. 

The total amount of variation explained by the rotated factor model is the same, but the contributions are not the same from the individual factors. We gain a cleaner interpretation, but the first factor is not going to explain as much of the variation. However, this would not be considered a particularly large cost if we are still going to be interested in these three factors. 

What we are trying to do here is clean up our interpretation. Ideally, if this works well, what we should find is that the numbers in each column of will be either far away from zero or close to zero. If we have a lot of numbers close to one or negative one or zero in each column this would be the ideal or cleanest interpretation that one could obtain and this is what we are trying to find in one of the rotations of the data. However, data are seldom this cooperative! 

Reminder: our objective here is not hypothesis testing but data interpretation. The success of the analysis can be judged by how well it helps you make your interpretation. If this does not help you then the analysis is a failure. If does give you some insight as to the pattern of variability in the data, then we have a successful analysis. 



Estimation of Factor Scores 

These factor scores are similar to the principal components in the previous lesson. One of the things that we did in principal components is to plot the principal components against each other in scatter plots. A similar thing can be done here with the factor scores. We also might take the factor scores and use them as explanatory variables in future analyses. Or, perhaps use them as the dependent variable in future analyses. 

The methods for estimating these scores depend a lot on the method that was used to carry out the principal components analysis. What we are after here is trying to find out the vectors of common factors f . The notion remains that there are m unobserved factors that underlay our model. What we would like to be able to do is estimate those factors. We don't see them but we want to estimate them and if we have a good model they can be estimated. 

Therefore, given the factor model: 
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we may wish to estimate the vectors of factor scores 
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for each observation. 

Methods

There are a number of different methods that can be used for estimating factor scores from the data. These include:

· Ordinary Least Squares

· Weighted Least Squares

· Regression method

Ordinary Least Squares

By default, this is the method that SAS uses if you use the principal component method of analysis. Unfortunately, SAS is a little bit vague about what it is doing here. Usually SAS will give you plenty of detail about how results are derived, but on this one it seems to be very vague. 

Basically, we have our model and we look at the difference between the jth variable on the ith subject and its value under the factor model. The L's are factor loadings and the f are our unobserved common factors. The following is performed done subject by subject.

So here, we wish to find the vector of common factors for subject i, or [image: image814.png]


, by minimizing the sum of the squared residuals:
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This is like a least squares regression, except in this case we already have estimates of the parameters (the factor loadings), but wish to estimate the explanatory common factors. In matrix notation the solution is expressed as: 
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In practice, we substitute in our estimated factor loadings into this expression as well as the sample mean for the data: 
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Using the principal component method with the unrotated factor loadings, this yields: 
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e1 through em are our first m eigenvectors.

Weighted Least Squares (Bartlett) 

This alternative is similar to the Ordinary Least Squares method. The only real difference is that we are going to divide by the specific variances when we are taking the squared residual as shown below. This is going to give more weight, in this estimation, to variables that have low specific variances. Variables that have low specific variances are those variables for which the factor model fits the data best. We posit that those variables that have low specific variances give us more information regarding the true values for the specific factors. 

Therefore, for the factor model:
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we want to find [image: image820.png]


that minimizes
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The solution is can be given by this expression where Ψ is the diagonal matrix whose diagonal elements are equal to the specific variances: 
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and can be estimated by substituting in the following: 

[image: image823.png]



Regression Method 

This method is used when you are calculating maximum likelihood estimates of factor loadings. What it involves is looking at a vector that includes the observed data, supplemented by the vector of factor loadings for the ith subject.

Joint distribution of the data Yi and the factor fi is
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Using this we can calculate the conditional expectation of the common factor score fi given the data Yi as expressed here:
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This suggests the estimator by substituting in the estimates for the L and Ψ:
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There is a little bit of a fix that often takes place to reduce the effects of incorrect determination of the number of factors. This tends to give you results that are a bit more stable. 
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Summary

In this lesson we learned about: 

· The interpretation of factor loadings; 

· The principal component and maximum likelihood methods for estimating factor loadings and specific variances; 

· How communalities can be used to assess the adequacy of a factor model; 

· A likelihood ratio test for the goodness-of-fit of a factor model; 

· Factor rotation; 

· Methods for estimating common factors

Lesson 17: Canonical Correlation Analysis

Introduction

Canonical correlation analysis is just like Principal Components Analysis and Factor Analysis in that both involve a single population of sample units. However, in this case our we have two type of variables of interest. 

An example of this would be variables related to exercise and health. On the one hand you have variables that would be associated with exercise, observations such as the climbing rate on a stair stepper, how fast you can run, the amount of weight lifted on bench press, the number of push-ups per minute, etc. But we also might have health variables such as blood pressure, cholesterol levels, glucose levels, body mass index, etc. So in this case we have two types of variables and what we would like to do is to describe the relationships between the exercise variables and the health variables. 

A second example occurs in environmental health and environmental toxins. Here we may have a number of environmental health variables such as frequencies of sensitive species, species diversity, total biomass, productivity of the environment, etc. But you also would like to have a second set of variables which might impact this environment, variables such as environmental toxins which might include the concentrations of heavy metals, pesticides, dioxin, etc. Again, there are two different types of variables present here. 

Objective

Describe the relationship between the first set of variables and the second set of variables. We are not necessarily think of one set of variables as the independent and the other as dependent, although this is one way to potentially consider, but this is not necessarily the approach here. 

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Carry out a canonical correlation analysis using SAS; 

· Assess how many canonical variate pairs should be considered; 

· Interpret canonical variate scores; 

· Describe the relationships between variables in the first set with variables in the second set.



Alternative Approaches

How can we describe these interrelationships between two sets of variables? There are a couple of approaches that you might consider.

Approach 1 - Compute Correlations

You could compute all correlations between variables from the first set (e.g., exercise variables), and then compute all the correlations between the variables in the second set (e.g., health variables). 

A problem, however, arises with this approach. If there are p variables in the first set and q variables in the second set, then there are pq such correlations. With such a large number of correlations, it may be difficult to interpret the results. It would be difficult to wrap our mind around all of these interrelationships.

Approach 2 - Visual Inspection

We could produce something graphical. Instead of using numerical results we could create pairwise scatter plots between variables in the first set (e.g., exercise variables), and variables in the second set (e.g., health variables).

Again, we have a problem. Since there are pq such scatter plots, it again may be difficult to look at all of these graphs together and be able to interpret the results.

Approach 3: Canonical Correlation Analysis 

Canonical Correlation Analysis will allow us to summarize these into smaller sets of summaries. In some ways, you may see some similarities in terms of motivation between this approach and that of principal components analysis.



Setting the Stage for Canonical Correlation Analysis

Let's begin with the notation:

We will have to sets of variables that we will call X and Y.

Suppose that we have p variables in set 1, which we will collect into a vector X: [image: image828.png]



and suppose that we have q variables in set 2, which we will collect into a vector Y: [image: image829.png]



We will select which variables are the X and which are the Y based on the number of variables that exist in each set. Generally, we need to assign the variables to the sets so that p ≤ q. They can be equal, but arbitrarily the first set of variables should be smaller than the second set of variables. This is done for computational convenience.

Just as we did in principal components analysis we will be looking at linear combinations of the data. We will take a similar approach here. We will define a set of linear combinations named U and V. U will correspond to the first set of variables, X, and V will correspond to the second set of variables, Y. U1 below is a linear combination of the p X variables a and so on...

Just as we did in principal components analysis we will be looking at linear combinations of the data. Instead of defining a single set of linear combinations as we had in principal component analysis, we will now define two sets of linear combinations named U and V . U will correspond to the first set of variables, X , and V will correspond to the second set of variables, Y . Each member of U will be paired with a member of V. For example, U1 below is a linear combination of the p X variables and V1 is the corresponding linear combination of the q Y variables: 
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Similarly, U2 is a linear combination of the p X variables, and V2 is the corresponding linear combination of the q Y variables. And, so on.... 

So what this will lead is the definition of:

[image: image831.png](UT3)




which is called the ith canonical variate pair. (U1, V1) is the first canonical variate pair, similarly (U2, V2) would be the second canonical variate pair and so on...

What we are attempting to do here, is to find linear combinations that maximize the correlations between the members of each canonical variate pair.

We can compute the variance of Ui variables using the following expression:
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The coeffcients ai1 through aip that appear in the double sum are the same coefficients that appear in the definition of Ui . The covariances between the kth and lth X-variables are multiplied by the corresponding coefficients aik and ail for the variate U i . 

Similar calculations can be made for the variance of Vj as shown below:
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Then we can also calculate the covariance between Ui and Vj as:
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The correlation between Ui and Vj is calculated using the usual formula. We take the covariance between those two variables and divide it by the square root of the product of the variances:
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The canonical correlation is a specific type of correlation. The canonical correlation for the ith canonical variate pair it is just the correlation between Ui and Vi: 
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It is this quantity that we want to maximize. We want to find linear combinations of the X's and linear combinations of the Y's that maximize the correlation.



Canonical Variates Defined

This is the procedure that is used in canonical correlation. We will look at each canonical variate pair separately but let's look at the first variate pair. 

First canonical variate pair: (U1, V1) 

Let [image: image837.png]an.an,




denote the canonical variate coefficients for the first group, U1, and

let [image: image838.png]


denote the canonical variate coefficients for the second group, V1.
What we want to do is to select these coefficients so as to maximize the canonical correlation [image: image839.png]P1



of the first canonical variate pair. We want to maximize the correlation between U1 and V1. 

We need to do this subject to the constraint that variances of the two canonical variates in that pair are both equal to one. 
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This is a required condition. This is required so that a unique values for the coefficients a and b are obtained. 

Second canonical variate pair: (U2, V2) 

This second canonical variate pair is defined in a similar manner. We want to find the coefficients[image: image841.png]
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that maximize the canonical correlation [image: image843.png]p3



of the second canonical variate pair, (U2, V2). Again, we will maximize this canonical correlation subject to the constraints that the variances of the individual canonical variates are both equal to one. Furthermore, to prevent us for getting the same answer that we got for the first one, we require the additional constraints that (U1, U2), and (V1, V2) have to be uncorrelated. In addition, the combinations (U1, V2) and (U2, V1) must be uncorrelated. In summary, our constraints are: 

[image: image844.png]var(Ua) = var(V2) = 1,
cov(U,Us) = cov(1.73) = 0
cov(Ur.¥3) = cov(Un. V1) = 0




Basically we require that all of the remaining correlations equal zero.

This procedure is repeated for each pair of canonical variates. In general, ... 

ith canonical variate pair: (Ui, Vi) 

We want to find the coefficients [image: image845.png]ai.ap, . ap



and [image: image846.png]bit.ba.-+.big



that maximizes the canonical correlation [image: image847.png]


subject to the similar constraints that 
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Again, requiring all of the remaining correlations to be equal zero. 

Next, let's see how this is carried out in SAS...



Example: Sales Data

The data that we are going to analyze comes from a firm that surveyed a random sample of n = 50 of its employees in an attempt to determine what factors influence sales performance. Two collections of variables were measured: 

· Sales Performance: 

· Sales Growth

· Sales Profitability 

· New Account Sales 

· Test Scores as a Measure of Intelligence 

· Creativity 

· Mechanical Reasoning 

· Abstract Reasoning 

· Mathematics 

There are p = 3 variables in the first group relating to Sale Performance and p = 4 variables in the second group relating to the Test Scores. 

Canonical Correlation Analysis is carried out in SAS using a canonical correlation procedure that is abbreviated as cancorr. We will look at how this is carried out in the SAS Program sales.sas.
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1. Test for Relationship Between Canonical Variate Pairs

The first thing that we generally want to know in this analysis is: Is there any relationship between the two sets of variables. Perhaps the two sets of variables are completely unrelated to one another and independent! What we want to do is to test for independence between the Sales Performance and the Test Score variables. 

The way this is done is to first consider a multivariate multiple regression model where we are predicting, in this case, Sales Performance variables from the Test Score variables. In this general case, we are going to have p multiple regressions, each multiple regression predicting one of the variables in the first group ( X variables) from the q variables in the second group ( Y variables). 
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In our example, we have multiple regressions predicting the p = 3 sales variables from the q = 4 test score variables. We wish to test the null hypothesis that all of these regression coefficients (except for the intercepts) are all equal to zero. This would be equivalent to the null hypothesis that the first set of variables is independent from the second set of variables.
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This is carried out using Wilk's lambda, a very similar test to what we looked at when we were using the MANOVA. The results of this are found on page 1 of the output of the SAS Program. 
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SAS reports the Wilks’ lambda Λ = 0.00215; F = 87.39; d.f. = 12, 114; p < 0.0001. Therefore, we can reject the null hypothesis that there is no relationship between the two sets of variables, and can conclude that the two sets of variables are dependent. Note also that, the above null hypothesis is equivalent to testing the null hypothesis that all p canonical variate pairs are uncorrelated, or...
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Since Wilk's lambda is significant, and since the canonical correlations are ordered from largest to smallest, we can conclude that at least [image: image856.png]pi#0



.

We may also wish to test the null hypothesis that maybe the second or the third canonical variate pairs are correlated. We can do this in successive tests. Next, test whether the second and third canonical variate pairs are correlated... 
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We can look again at the SAS output above in the second row for the likelihood ratio test statistic and find L' = 0.19524; F = 18.53; d.f. = 6, 88; p < 0.0001. From this test we can conclude that the second canonical variate pair is correlated, [image: image858.png]


.

Finally, we can test the significance of the third canonical variate pair. 
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Again, we look at the SAS output above, this time in the third row for the the likelihood ratio test statistic and find L' = 0.8528; F = 3.88; d.f. = 2, 45; p = 0.0278. This is also significant, so we can conclude that the third canonical variate pair is uncorrelated. 

All three canonical variates pairs are significantly correlated and dependent on one another. This suggests that we would want to go ahead and summarize for all three pairs. In practice, these tests would be carried out successively until you find a non-significant result. Once a non-significant result is found you would stop. If this happens with the first canonical variate pair this would suggest that there is no evidence to suggest there is any relationship between the two sets of variables and the analysis may be stopped. 

If the first pair shows significance, then you move on to the second canonical variate pair. If this second pair is not significantly correlated then you would stop. If it was significant you would continue to the third pair, proceeding in this iterative manner through the pairs of canonical variates testing until you find non-significant results. 



2. Obtain Estimates of Canonical Correlation

Now that we have tested these hypotheses, the second thing that we can do is to obtain our estimates of canonical correlation. 

The estimated canonical correlations are found at the top of page 1 in the SAS output as shown below: 
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The squared values of the canonical variate pairs, found in the last column, can be interpreted much in the same way as r2 values are interpreted.

We see that 98.9% of the variation in U1 is explained by the variation in V1, and 77.11% of the variation in U2 is explained by V2, but only 14.72% of the variation in U3 is explained by V3. These first two are very high canonical correlation and implies that only the first two canonical correlations are important. 

One can actually see this from the plot that the SAS program generated. Here is the scatter plot for the first canonical variate pair, the first canonical variate for sales is plotted against the first canonical variate for scores. 
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The program has also drawn the regression line to see how well the data fits. The plot of the second canonical variate pair is a bit more scattered: 
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But is still a reasonably good fit. A plot of the third pair would show little of the same kind of fit. 

One may make a decision here and refer to only the first two canonical variate pairs from this point on based on the observation that the third squared canonical correlation value is so small. While it is significantly correlated they are not very strongly correlated. Based on this weakness of this correlation we may decide not to interpret this third canonical variate pair. 



3. Obtain the Canonical Coefficients

Page 2 of the SAS output provides the estimated canonical coefficients (aij) for the sales variables which are provided in the following table. 
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Thus, using the coefficient values in the first column, the first canonical variable for sales can be determined using the following formula:
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Likewise, the estimated canonical coefficients (bij) for the test scores are located in the next table in the SAS output:
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Thus, using the coefficient values in the first column, the first canonical variable for test scores can be determined using a similar formula:
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In both cases, the magnitudes of the coefficients give the contributions of the individual variables to the the corresponding canonical variable. However, just like in principal components analysis, these magnitudes also depend on the variances of the corresponding variables. Unlike principal components analysis, standardizing the data actually has no impact on the canonical correlations. 



4. Interpret Each Component

To interpret each component, we must compute the correlations between each variable and the corresponding canonical variate. 

a. The correlations between the sales variables and the canonical variables for Sales Performance are found at the top of the fourth page of the SAS output in the following table: 
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Looking at the first canonical variable for sales, we see that all correlations are uniformly large. Therefore, you can think of this canonical variate as an overall measure of Sales Performance. For the second canonical variable for Sales Performance, the correlations are all small. None of them is particularly large, and so, this canonical variable yields little information about the data. Again, we had decided earlier not to look at the third canonical variate pairs. 

A similar interpretation can take place with the Test Scores...

b. The correlations between the test scores and the canonical variables for Test Scores are also found in the SAS output: 
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Since all correlations are large for the first canonical variable, this can be thought of as an overall measure of test performance as well, however, it is most strongly correlated with mathematics test scores. Most of the correlations with the second canonical variable are small. There is some suggestion that this variable is negatively correlated with abstract reasoning. 

c. Putting (a) and (b) together, we see that the best predictor of sales performance is mathematics test scores as this indicator stands out most.

5. Reinforcing the Results

These results can be further reinforced by looking at the correlations between each set of variables and the opposite group of canonical variates. 

a. The correlations between the sales variables and the first canonical variate for test scores are found on page 4 of the SAS output and have been inserted below: 
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We can see that all three of these correlations are all pretty strong and show a pattern similar to that with the canonical variate for sales. The reason for this is pretty obvious: The first canonical correlation is very high. 

b. The correlations between the test and the first canonical variate for sales have also been inserted here from the SAS output:
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Note that these also show a pattern similar to that with the canonical variate for test scores. Again, this is because the first canonical correlation is very high. 

c. These results confirm that sales performance is best predicted by mathematics test scores.

Summary

In this lesson we learned about: 

· How to test for independence between two sets of variables using Wilk's lambda; 

· How to determine the number of significant canonical variate pairs; 

· How to compute the canonical variates from the data; 

· How to interpret each member of a canonical variate pair using its correlations with the member variables; 

· How to use the results of canonical correlation analysis to describe the relationships between two sets of variables. 

Lesson 18: Cluster Analysis

Introduction

Contrasting Use of Descriptive Tools

Principal Component Analysis, Factor Analysis and Cluster Analysis are all used to help describe data. And the success of these analysis is generally judged with respect to how well they describe the data. 

Principal Component Analysis and Factor Analysis are used when we have a single population of sample units. Our objective here is to describe the relationships among a large number of variables. If you only have two variables there is no point in doing a factor analysis or a principal component analysis. It's main use is when you have a large number of variables and you want to reduce the data to a smaller number of principal components or factors.

Cluster Analysis is used when we believe that the sample units come from an unknown number of distinct populations or sub-populations. For MANOVA, we had a number of hypothetical populations from which samples were obtained. Here, the different populations may correspond to different treatment groups. Our objective was to test the null hypothesis that all of the samples come from a single population. If we reject the null hypothesis, then we could conclude that the samples come from different populations. In this case, discriminant analysis may be used to estimate discriminant functions that may in turn be used to classify subjects coming from unknown populations into a particular population. 

For cluster analysis, we also assume that the sample units come from a number of distinct populations, but there is no apriori definition of those populations. Our objective is to describe those populations using the observed data. those clusters. One assumes that the observed sample units are a representative sample of the populations as they exist. 

Cluster Analysis, until relatively recently, has had very little interest. This has changed because of the interest in the bioinformatics and genome research. To explore Cluster Analysis in our lesson here, we will use an ecological example using data collected collected by the author of these course materials. 

Learning objectives & outcomes

Upon completion of this lesson, you should be able to do the following: 

· Carry out cluster analysis using SAS; 

· Use a dendrogram to partition the data into clusters of known composition; 

· Carry out posthoc analyses to describe differences among clusters. 



Example: Woodyard Hammock Data

We will illustrate the various methods of cluster analysis using ecological data from Woodyard Hammock, a beech-magnolia forest in northern Florida. The data involve a counts of the numbers of trees of each species in n = 72 sites. A total of 31 species were identified and counted, however, only the p = 13 most common species were retained and are listed below. They are: 

	carcar
	Carpinus caroliniana
	Ironwood

	corflo
	Cornus florida
	Dogwood

	faggra
	Fagus grandifolia
	Beech

	ileopa
	Ilex opaca
	Holly

	liqsty
	Liquidambar styraciflua 
	Sweetgum

	maggra
	Magnolia grandiflora
	Magnolia

	nyssyl
	Nyssa sylvatica
	Blackgum

	ostvir
	Ostrya virginiana
	Blue Beech 

	oxyarb
	Oxydendrum arboreum 
	Sourwood

	pingla
	Pinus glabra 
	Spruce Pine

	quenig
	Quercus nigra
	Water Oak 

	quemic
	Quercus michauxii 
	Swamp Chestnut Oak 

	symtin
	Symplocus tinctoria
	Horse Sugar


The first column gives the 6-letter code identifying the species, the second column gives its scientific name (Latin binomial), and the third column gives the common name for each species. The most commonly found of these species were the beech and magnolia.

What is our objective with this data?

What we want to do is to group sample sites together into clusters that share similar data values (similar species compositions) as measured by some measure of association. What we are after is a reasonable grouping of the sites. 

Cluster analysis is a very broad collection of techniques and as you will see, there many different ways in which the data may be clustered. Nevertheless, three choices are common to many types of cluster analysis: 

1. Measure of Association between Sample Units - this is required for any type of cluster analysis. We need some way to measure how similar two subjects or objects are to one another. This could be just about any type of measure of association. There is a lot of room for creativity here. However, SAS only allows Euclidean distance (defined later).

2. Measure of Association between Clusters - how similar are two clusters from one another? There are dozens of techniques that can be used here .

3. Agglomerative vs. Divisive Clustering - the agglomerative method starts at the leaves of the tree and works its way down to the trunk - the divisive method starts at the trunk and works its way out to the leaves. Besides these two methods, there are also a couple of other methods for performing cluster analysis that we will not look at in this lesson.



Measures of Association

There are two cases that we need to consider: 

· Continuous Variables, and

· Binary Variables (presence/absence) 

Measures of Association for Continuous Variables 

Here we will use the standard notation that we have been using all along:

· Xik = Response for variable k in sample unit i (the number of individual species k at site i)

· n = Number of sample units

· p = Number of variables 

Johnson and Wichern (1998) list four different measures of association (similarity) that are frequently used with continuous variables in cluster analysis: 

Euclidean Distance - This is the most commonly used. For instance, in two dimensions, we can plot the observations in a scatter plot, and simply measure the distances between the pairs of points. More generally we can use the following equation:
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For each variable k , take the difference between the observations for sites i and j . These differences are then squared, and summed summed over p variables. This gives us the sum of the squared difference between the measurements for each variable. Finally, take the square-root of the result. This is the only method that is available in SAS. 

There are other variations on this basic concept. For instance the Minkowski Distance is:
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Here the square is replaced with raising the difference by a power of m and instead of taking the square root, we take the mth root.

Here are two other methods for measuring association:

Canberra Metric [image: image873.png]



Czekanowski Coefficient [image: image874.png]237 min(Xi. X)
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For each of these distance measures, the smaller the distance, the more similar (more strongly associated) the two subjects. 

Or, if you like, you can invent your own measure! However, whatever you invent the measure of association must satisfy the following properties: 

1. Symmetry - [image: image875.png]d(X..X)) = d(X;.X)



- i.e., the distance between subject one and subject two must be the same as the distance between subject two and subject one.

2. Positivity - [image: image876.png]X)) > 0ifX; # Xj



- the distances must be positive - negative distances are not allowed!

3. Identity - [image: image877.png]d(X:.X;) = 0if X,




- the distance between the subject and itself should be zero.

4. Triangle inequality - [image: image878.png]


- for instance, in looking at three sites in this case, the distance between two sites can not be greater than the distance between those two sites and a third site.

These distance metrics are appropriate for continuous variables. However, sometimes you will have 0,1 data. Let's consider measurements of association for binary data next... 



Measures of Association for Binary Variables 

In the Woodyard Hammock example the observer has recorded how many individuals belonged to each species at each site. However, other research methods might find the observer recording whether or not the species was present at a site or not. In sociological studies we might be looking at traits of people where some people have some traits and not other traits. Again, typically 1 signifies that it is present, 0 if it is absent, or 0,1 data with a binary response. 

For sample units i and j, consider the following contingency table of frequencies of 1-1, 1-0, 0-1, and 0-0 matches across the variables: 

	
	
	Unit j
	

	
	
	1
	0
	Total

	Unit i
	1
	a
	b
	a + b

	
	0
	c
	d
	c + d

	
	Total
	a + c
	b + d
	p = a + b + c + d


Here we are comparing two subjects, subject i and subject j. a would be the number of variables which are present for both subjects. In the Woodyard Hammock example, this would be the species found at both sites. b would be the number found in subject i but not subject j . c is just the opposite and d is the number that are not found in either subject.

From here we can calculate row totals, column totals and a grand total. 

Johnson and Wichern (1998) list the following Similarity Coefficients that can be used for binary data: 
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The first coefficient looks at the number of matches (1-1 or 0-0) and divides by the total number of variables. If two sites had identical species lists, then this coefficient is equal to one since c = d = 0. The more species that are found at one and only one of the two sites, the smaller the value for this coefficient. If no species in one site are found in the opposite site, then this coefficient takes a value of zero, since in this case a = b = 0. 

The remaining coefficients give different weights to matched (1-1 or 0-0) or mismatched (1-0 or 0-1) pairs. For, the second coefficient gives matched pairs double the weight, and thus emphasizes agreements in the species lists. In contrast, the third coefficient gives mismatched pairs double the weight, more strongly penalizing disagreements between the species lists. The remaining coefficients ignores species that are found in neither site. 

The choice of coefficient will have an impact on the results of the analysis. Coefficients may be selected based on theoretical considerations specific to the problem at hand, or so as to yield the most parsimonious description of the data. For the latter, the analysis may be repeated using several of these coefficients. The coefficient that yields the most easily interpreted results is selected. 

The main thing is that you need some measure of association between your subjects before the analysis can proceed .

We will look next at methods of measuring distances between clusters...



Measuring Association d12 Between Clusters 1 and 2

After determining the measurement of association between the subjects, the next thing to look at is measuring the association between the clusters that may contain two or more members. There are multiple approaches that one can take. Methods for measuring association between clusters are called linkage methods. 

Notation: 

· X1, X2, ... , Xk = Observations from cluster 1

· Y1, Y2, ... , Yl = Observations from cluster 2 

· d ( x,y ) = Distance between a subject with observation vector x and a subject with observation vector y 

Linkage Methods or Measuring Association d12 Between Clusters 1 and 2

	Centroid Method 
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	This involves finding the mean vector location for each of the clusters and taking the distance between these two centroids.

	Single Linkage 
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	This is the distance between the closest members of the two clusters. 

	Complete Linkage 
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	This is the distance between the farthest apart members.

	Average Linkage 
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	This method involves looking at the distances between all pairs and averages all of these distances. This is also called UPGMA - Unweighted Pair Group Mean Averaging.


Use your mouse to rollover the linkage method types listed on the right for a visual representation of how these distances are determined for each method.



Agglomerative vs. Divisive Clustering

Once the measure of association as well as the method for determining the distances between clusters have been considered, out last choice for cluster analysis follows. There are two methods for proceeding... 

Agglomerative Clustering:

(Leaves to trunk)

· We start out with all sample units in n clusters of size 1. 

· Then, at each step of the algorithm, the pair of clusters with the shortest distance are combined into a single cluster. 

· The algorithm stops when all sample units are combined into a single cluster of size n. 

Divisive Clustering:

(Trunk to leaves)

· We start out with all sample units in a single cluster of size n. 

· Then, at each step of the algorithm, clusters are partitioned into a pair of daughter clusters, selected to maximize the distance between each daughter.

· The algorithm stops when sample units are partitioned into n clusters of size 1.

Let's take a look at how the agglomerative method is implemented first...



The Agglomerative Method in SAS

Example: Woodyard Hammock Data 

Note: SAS only uses the Euclidean distance metric, and agglomerative clustering algorithms.

Cluster analysis is carried out in SAS using a cluster analysis procedure that is abbreviated as cluster. We will look at how this is carried out in the SAS program wood1.sas below. 
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Dendrograms (Tree Diagrams) 

The results of cluster analysis are best summarized using a dendrogram. In a dendrogram, distance is plotted on one axis, while the sample units are given on the remaining axis. The tree shows how sample units are combined into clusters, the height of each branching point corresponding to the distance at which two clusters are joined. 

In looking at the cluster history section of the SAS output , we see that the Euclidean distance (0.2781) between sites 33 and 51 was smaller than between any other pair of sites(clusters). Therefore, this pair of sites was clustered first in the tree diagram. Following the clustering of these two sites, there are a total of n - 1 = 71 clusters, and so, the cluster formed by sites 33 and 51 is designated "CL71" . 

The Euclidean distance (0.2813) between sites 15 and 23 was smaller than between any other pair of the 70 heretofore unclustered sites or the distance between any of those sites and CL71. Therefore, this pair of sites was clustered second. Its designation is "CL70" .

In the seventh step of the algorithm, the distance (0.3471) between site 8 and cluster CL67 was smaller than the distance between any pair of heretofore unclustered sites and the distances between those sites and the existing clusters. Therefore, site 8 was joined to CL67 to form the cluster of 3 sites designated as CL65.

The clustering algorithm is completed when clusters CL2 and CL5 are joined. 

The vertical line in the SAS plot below is used to follow the results of the cluster history algorithm that SAS uses to identify clusters within the data. Use the "Inspect" button below the plot to walk through this iterative clustering process and the resulting dendogram.
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What do you do with the information that this tree diagram?

What we need to do is to decide how many clusters do you want to derive from the data. We also need to decide which clustering technique that will be used. Therefore, we have adapted the wood1.sas program to specify use of the other clustering techniques. Here are links to these program changes: 

	


	wood1.sas 
	specifies complete linkage

	


	wood2.sas 
	is identical, except that it uses average linkage

	


	wood3.sas 
	uses the centroid method

	


	wood4.sas 
	uses the simple linkage


As we run each of these programs we must remember to keep in mind that what we really after is a good description of the data.

Applying the Cluster Analysis Process

First we want to compare results of the different clustering algorithms. Clusters containing one or a few members are undesirable. 

Select the number of clusters that have been identified by each method. This is accomplished by finding a break point (distance) below which further branching is ignored. In practice this is not necessarily straightforward. You will need to try a number different cut points to see which is more decisive. Here are the results of this type of partitioning using the different clustering algorithm methods on the Woodyard Hammock data. 

	


	Complete Linkage 
	Partitioning into 6 clusters yields clusters of sizes 3, 5, 5, 16, 17, and 26.

	


	Average Linkage 
	Partitioning into 5 clusters would yield 3 clusters containing only a single site each.

	


	Centroid Linkage 
	Partitioning into 6 clusters would yield 5 clusters containing only a single site each.

	


	Single Linkage 
	Partitioning into 7 clusters would yield 6 clusters containing only 1-2 sites each. 


Complete linkage yields the most satisfactory result. 



Cluster Description 

The next step of the cluster analysis is to describe the clusters that we have identified. For this we will return to the SAS program below to see how this is implemented. 

[image: image897.png]options 1s=78;
title 'Cluster Analysis - Uoodyard Hammock - Complete Linkage':

= data wood;
infile 'D:\Statistics\STAT S05\data\uood.txt';
input x y acerub carcar carcor cargla cercan corflo faggra frapen
ileopa ligsty lirtul maggra magvir morrub nyssyl osuame ostvir
oxyarb pingla pintae pruser quealb quehen quenig quemic queshu quevir
syutin ulnala araspi cyrrac:
arop acerub carcor cargla cercan frapen lirtul magvir morrub osmame pintae

1dent

pruser quealb quehen queshu quevir ulmala araspi cyrrac;

Eproc sort;
by ident;

Eproc cluster netho Tustl;
var carcar corflo faggra ileopa ligsty maggra nyssyl ostvir oxyarh
pingla quenig quenic syntin;
id ident;

omplete outtre

Eproc tree horizontal ncluster Tustz;
id ident;

Eproc sort;
by ident;

Eproc print;

Edata combine;
nerge wood clustz;
by ident;

Eproc gln;
class cluster;
model carcar corflo faggra ileopa ligsty maggra myssyl ostvir oxyarh
pingla quenig quemic syntin = cluster;
neans cluster;




Notice that in the cluster procedure we created a new SAS dataset called clust1. This contains the information required by the tree procedure to draw the tree diagram. 

In the tree procedure, we specified that 6 clusters will be investigated. A new SAS dataset called clust2 is created. This dataset will contain the id numbers of each site together with a new variable, called cluster, identifying which cluster that site belongs. What we need to do is merge this back with the original data so that we can describe the characteristics of each of the 6 clusters. 

Now an Analysis of Variance for each species can be carried out specifying a class statement for the grouping variable, in this case, cluster. 

We also include the means statement to get the cluster means.

We performed an analysis of variance for each of the tree species, comparing the means for those species across clusters. To control for experiment-wise error rate, the Bonferroni method shall be applied. This means that we will reject the null hypothesis of equal means among clusters at level a if the p-value is less than α/ p . Here, p = 13; so for an a = 0.05 level test, we reject the null hypothesis of equality of cluster means if the p-value is less than 0.05/13 or 0.003846. 

Here is the output for the species carcar.
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We have collected the results of the individual species ANOVA's in the table below. The species names that are in boldface indicate significant results suggesting that there was significant variation among the clusters for that particular species. Note that the d.f. should always be presented.

	Code
	Species
	F
	p-value

	carcar
	Ironwood
	62.94
	< 0.0001

	corflo
	Dogwood
	1.55
	0.1870

	faggra
	Beech
	7.11
	< 0.0001

	ileopa
	Holly
	3.42
	0.0082 

	liqsty
	Sweetgum
	5.87
	0.0002

	maggra
	Magnolia
	3.97
	0.0033

	nyssyl
	Blackgum
	1.66
	0.1567

	ostvir
	Blue Beech 
	17.70
	< 0.0001

	oxyarb
	Sourwood
	1.42
	0.2294 

	pingla
	Spruce Pine
	0.43
	0.8244

	quenig
	Water Oak 
	2.23
	0.0612

	quemic
	Swamp Chestnut Oak 
	4.12 
	0.0026 

	symtin
	Horse Sugar
	75.57
	< 0.0001


d.f. = 5,66 

The results indicate that there are significant differences among clusters for ironwood, beech, sweetgum, magnolia, blue beech, swamp chestnut oak, and horse sugar. 

Next, SAS computed the cluster means for each of the species. Here is a sample of the output with a couple of the significant species highlighted.
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We have collected the cluster means for each of the significant species indicated above and placed these values in the table below:

	
	Cluster

	Code
	1
	2
	3
	4
	5
	6

	carcar
	3.8
	24.4 
	18.5
	1.2
	8.2
	6.0

	faggra
	11.4
	6.4
	5.9
	5.9
	8.6
	2.7

	liqsty
	7.2
	17.4
	6.4
	6.8
	6.6
	18.0

	maggra
	5.3
	3.8
	2.8
	3.2
	4.6
	0.7

	ostvir
	4.3
	2.8
	2.9
	13.8
	3.6
	14.0

	quemic
	5.3
	5.2
	9.4
	4.1
	7.0
	2.3

	symtin
	0.9
	0.0
	0.7
	2.0
	18.0
	20.0


For each species, highlight the clusters where that species is abundant. For example, carcar (ironwood) is abundant in clusters 2 and 3. This operation is carried out across the rows of the table. 

Each cluster is then characterized by the species that are highlighted in its column. For example, cluster 1 is characterized by a high abundance of faggra, or beech trees. This operation is carried out across the columns of the table. 

In summary, we find: 

· Cluster 1: primarily Beech (faggra) 

· Cluster 2: Ironwood (carcar) and Sweetgum (liqsty)

· Cluster 3: Ironwood (carcar) and Swamp Chestnut Oak(quemic) 

· Cluster 4: primarily Blue Beech (ostvir)

· Cluster 5: Beech (faggra), Swamp Chestnut Oak(quemic) and Horse Sugar(symtin)

· Cluster 6: Sweetgum (liqsty), Blue Beech (ostvir) and Horse Sugar(symtin) 

It is also useful to summarize the results in the cluster diagram: 
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We can see that the two ironwood clusters (2 and 3) are joined. Ironwood is an understory species that tends to be found in wet regions that may be frequently flooded. Cluster 2 also contains sweetgum, an overstory species found in disturbed habitats, while cluster 3 contains swamp chestnut oak, an overstory species characteristic of undisturbed habitats. 

Clusters 5 and 6 both contain horse sugar, an understory species characteristic of light gaps in the forest. Cluster 5 also contains beech and swamp chestnut oak, two overstory species characteristic of undisturbed habitats. These are likely to be saplings of the two species growing in the horse sugar light gaps. Cluster 6 also contains blue beech, an understory species similar to ironwood, but characteristic of uplands. 

Cluster 4 is dominated by blue beech, an understory species characteristic of uplands 

Cluster 1 is dominated by beech, an overstory species most abundant in undisturbed habitats. 

From the above description, you can see that a meaningful interpretation of the results of a cluster analysis can best be obtained using subject-matter knowledge. 



Ward’s Method 

This is an alternative approach for performing cluster analysis. Basically, it looks at cluster analysis as an analysis of variance problem, instead of using distance metrics or measures of association. 

This method involves an agglomerative clustering algorithm. It will start out at the leaves and work its way to the trunk, so to speak. It looks for groups of leaves that it forms into branches, the branches into limbs and eventually into the trunk. Ward's method starts out with n clusters of size 1 and continues until all the observations are included into one cluster. 

This method is most appropriate for quantitative variables, and not binary variables.

Based on the notion that clusters of multivariate observations should be approximately elliptical in shape, we assume that the data a from each of the clusters will be realized in a multivariate distribution. Therefore, it would follow that they would fall into an elliptical shape when plotted in a p-dimensional scatter plot. 

Notation that we will use is as follows: Let Xijk denote the value for variable k in observation j belonging to cluster i. 

Furthermore, for this particular method we have to define this the following:

· Error Sum of Squares: [image: image901.png]ESS = ZZZL\'




Here we are summing over all variables, and all of the units within each cluster. Here, we are comparing the individual observations for each variable against the cluster means for that variable. Note that when the Error Sum of Squares is small, then this suggests that our data are close to their cluster means, implying that we have a cluster of like units.

· Total Sum of Squares: [image: image902.png]TSS = Z Z‘Z‘XW Tl




The total sums of squares is defined in the same as always. Here we are comparing the individual observations for each variable against the grand mean for that variable.

· R-Square: [image: image903.png]_ TSS-ESS
TS





This r2 value is interpreted as the proportion of variation explained by a particular clustering of the observations.

Using Ward's Method we will start out with all sample units in n clusters of size 1 each. In the first step of the algorithm, n - 1 clusters are formed, one of size two and the remaining of size 1. The error sum of squares and r2 values are then computed. The pair of sample units that yield the smallest error sum of squares, or equivalently, the largest r2 value will form the first cluster. Then, in the second step of the algorithm, n - 2 clusters are formed from that n - 1 clusters defined in step 2. These may include two clusters of size 2, or a single cluster of size 3 including the two items clustered in step 1. Again, the value of r2 is maximized. Thus, at each step of the algorithm clusters or observations are combined in such a way as to minimize the results of error from the squares or alternatively maximize the r2 value. The algorithm stops when all sample units are combined into a single large cluster of size n . 



Example: Woodyard Hammock Data 

We will take a look at the implementation of Ward's Method using the SAS program wood5.sas.

[image: image904.png]options 1s=78;
title "Cluster Analysis - Uoodyard Hammock - Vard's Method”;

Eldata wood;
infile "D:\Statistics\STAT S05\data\uood.txt”;
input x y acerub carcar carcor cargla cercan corflo faggra frapen
ileopa ligsty lirtul maggra magvir morrub nyssyl osuame ostvir
oxyarb pingla pintae pruser quealb quehen quenig quemic queshu quevir
syutin ulnala araspi cyrrac:

arop acerub carcor cargla cercan frapen lirtul magvir morrub osmame pintae
pruser quealb quehen queshu quevir ulmala araspi cyrrac;

Elproc sort;
by ident;

Elproc cluster [ethod=uard]outtree=clustl;
var carcar corflo faggra ileopa ligsty maggra nyssyl ostvir oxyarh
pingla quenig quenic syntin;
id ident;

Elproc tree horizental nolusters=d out-clustz;
id ident;

Elproc sort;
by ident;

Eldata conbine;
nerge wood clustz;
by ident;

Elproc gln;
class cluster;
model carcar corflo faggra ileopa ligsty maggra myssyl ostvir oxyarh
pingla quenig quemic syntin = cluster;
neans cluster;







As you can see, this program is very similar to the previous program, (wood1.sas), that was discussed earlier in this lesson. The only difference is that we have specified that method=ward in the cluster procedure as highlighted above. The tree procedure is used to draw the tree diagram shown below, as well as to assign cluster identifications. Here we will look at four clusters. 
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We had decided earlier that we wanted four clusters therefore we put the break in in the plot and have highlighted the resulting clusters. It looks as though there are two very well defined clusters because of there is pretty large break between the first and second branches of the tree. The partitioning results into 4 clusters yielding clusters of sizes 31, 24, 9, and 8. 

Referring back to the SAS output, the results of the ANOVAs were found and have copied them here for discussion.

	Results of ANOVA's

	Code
	Species
	F
	p-value

	carcar
	Ironwood
	67.42
	< 0.0001

	corflo
	Dogwood
	2.31
	0.0837

	faggra
	Beech
	7.13
	0.0003

	ileopa
	Holly
	5.38
	0.0022 

	liqsty
	Sweetgum
	0.76
	0.5188

	maggra
	Magnolia
	2.75
	0.0494

	nyssyl
	Blackgum
	1.36
	0.2627

	ostvir
	Blue Beech 
	32.91
	< 0.0001

	oxyarb
	Sourwood
	3.15
	0.0304

	pingla
	Spruce Pine
	1.03
	0.3839

	quenig
	Water Oak 
	2.39
	0.0759

	quemic
	Swamp Chestnut Oak 
	3.44
	0.0216

	symtin
	Horse Sugar
	120.95
	< 0.0001


d.f. = 3, 68 

We have boldfaced those species whose F-values, using a Bonferoni correction, show as being significant. These include Ironwood, Beech, Holly, Blue Beech and Horse Sugar. 

The next thing we will do is look at the cluster Means for these significant species: 

	
	Cluster

	Code
	1
	2
	3
	4

	carcar
	2.8
	18.5 
	1.0
	7.4

	faggra
	10.6
	6.0
	5.9
	6.4

	ileopa
	7.5
	4.3
	12.3
	7.9

	ostvir
	5.4
	3.1
	18.3
	7.5

	symtin
	1.3
	0.7
	1.4
	18.8


Again, we have boldfaced those values that show an abundance of that species within the different clusters.

· Cluster 1: Beech (faggra): Canopy species typical of old-growth forests. 

· Cluster 2: Ironwood (carcar): Understory species that favors wet habitats. 

· Cluster 3: Holly (ileopa) and Blue Beech (ostvir): Understory species that favor dry habitats. 

· Cluster 4: Horse Sugar(symtin): Understory species typically found in disturbed habitats. 

Note that this interpretation is cleaner than the interpretation obtained earlier from the complete linkage method. This suggests that Ward's method may be preferred for the current data. 

The results can then be summarized in the following dendrogram:
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In summary, this method is performed in essentially the same manner as the previous method the only difference is that the cluster analysis is based on Analysis of Variance instead of distances. 



K-Means Procedure 

This final method that we would like to examine is a non-hierarchical approach. This method was presented by MacQueen (1967) in the Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 
One of the advantages of this method is that we do not have to calculate the distance measures between all pairs of subjects. Therefore, this procedure seems much more efficient or practical when you have very large datasets. 

Under this procedure you need to pre-specifiy how many clusters you want to consider. The clusters in this procedure do not form a tree. There are two approaches to carrying out the K-Means procedure. The approaches vary as to how the procedure begins the partitioning. The first approach is to do this randomly, to start out with a random partitioning of subjects into groups and go from there. The alternative is to start with an additional set of starting points. These would form the centers of our clusters. The random nature of the first approach will avoid bias. 

Once this decision has been made, here is an overview of the process:

Step 1 - Partition the items into K initial clusters. 

Step 2 - Scan through the list of n items, assigning each item to the cluster whose centroid (mean) is closest. Each time an item is reassigned we will recalculate the cluster mean or centroid for the cluster receiving that item and the cluster losing that item. 

Step 3 - Repeat Step 2 over and over again until no more reassignments are made. 

Let's look at a simple example in order to see how this works. Here is an example where we have four items and only two variables:

	Item
	X1
	X2

	A 
	7
	9

	B 
	3
	3

	C 
	4
	1

	D 
	3
	8


Suppose that items are initially decide to partition the items into two clusters (A, B) and (C, D). Then calculating the cluster centroids, or the mean of all the variables within the cluster, we would obtain:
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For example , the mean of the first variable for cluster (A, B) is 5. 

Next we calculate the distances between the item A and the centroids of clusters (A, B) and (C, D).
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Here, we get a Euclidean distance between A and each of these cluster centroids. We see that item A is closer to cluster (A, B) than cluster (C, D). Therefore, we are going to leave item A in cluster (A, B)and no change is made at this point.

Next, we will look at the distance between item B and the centroids of clusters (A, B) and (C, D).
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Here, we see that item B is closer to cluster (A, B) than cluster (C, D). Therefore, item B will be reassigned, resulting in the new clusters (A) and (B, C, D).

The centroids of the new clusters now changed are calculated as: 
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Next, we will calculate the distance between the items and each of the clusters (A) and (B, C, D).
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It turns out that since all four items are closer to their current cluster centroids, no further reassignments are required. 

We must note however, that the results of the K-means procedure can be sensitive to the initial assignment of clusters. 

For example, suppose the items had initially been assigned to the clusters (A, C) and (B, D). Then the cluster centroids would be calculated as follows: 
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From here we can find that the distances between the items and the cluster centroids are: 
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Note that each item is closer to its cluster centroid than the opposite centroid. So, the initial cluster assignment is retained. 

Question!

If this is the case, the which result should be used as our summary? 

We can compute the sum of squared distances between the items and their cluster centroid. For our first clustering scheme for clusters (A) and (B, C, D), we had the following distances to cluster centroids: 
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So, the sum of squared distances is:

[image: image916.png]



For clusters (A, C) and (B, D), we had the following distances to cluster centroids: 
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So, the sum of squared distances is: 

18.25 + 6.25 + 18.25 + 6.25 = 49. 0 
We would conclude that since [image: image918.png]26.6 < 49.0



, this would suggest that the first clustering scheme is better and we would partition the items into the clusters (A) and (B, C, D). 

In practice, several initial clusters should be tried and see which one gives you the best results. The question here arises, however, how should we define the initial clusters?



Defining Initial Clusters

Now that you have a good idea of what is going to happen, we need to go back to our original question for this method... How should we define the initial clusters? Again, there are two main approaches that are taken to define these initial clusters. 

Random assignment

The first approach is just to assign the clusters randomly. This does not seem like it would be a very efficient approach. The main reason to take this approach would be to avoid any bias in this process.

Leader Algorithm

The second approach is to use a Leader Algorithm. (Hartigan, J.A., 1975, Clustering Algorithms). This involves the following procedure:

Step 1. Select the first item from the list. This item will form the centroid of the initial cluster. 

Step 2. Search through the subsequent items until an item is found that is at least distance δ away from any previously defined cluster centroid. This item will form the centroid of the next cluster. 

Step 3: Step 2 is repeated until all K cluster centroids are obtained, or no further items can be assigned. 

Step 4: The initial clusters are obtained by assigning items to the nearest cluster centroids.

The following viewlet illustrates how this procedure for k = 4 clusters and p = 2 variables plotted in a scatter plot. 
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Now, let's take a look at each of these options in turn using our Woodyard Hammock dataset.

Example: Woodyard Hammock Data 

We first must determine: 

· The number of clusters K
· The radius δ to be applied in the leader algorithm. 

In some applications, theory specific to the discipline may tell us how large K should be. In general, however, there is no prior knowledge that can be applied to find K. Our approach is to apply the following procedure for various values of K. For each K , we obtain a description of the resulting clusters. The value K is then selected to yield the most meaningful description. We wish to select K large enough so that the composition of the individual clusters is uniform, but not so large as to yield too complex a description for the resulting clusters. 

Here, we shall take K = 4 and use the random assignment approach to find a reasonable value for δ. 

This random approach is implemented in SAS using the following program titled wood6.sas.

[image: image921.png]options 1s=78;
title "Cluster Analysis - Uoodyard Hammock - K-Neans”:

Eldata wood;
infile "

Statistics\STAT S05\data\uood. txt”;
input x y acerub carcar carcor cargla cercan corflo faggra frapen
ileopa ligsty lirtul maggra magvir morrub nyssyl osuame ostvir

oxyarb pingla pintae pruser quealb quehen quenig quemic queshu quevir
syutin ulnala araspi cyrrac:

arop acerub carcor cargla cercan frapen lirtul magvir morrub osmame pintae

pruser quealb quehen queshu quevir ulmala araspi cyrrac;

Elproc sort;
by ident;

Elproc fastclus maxcluster:

replace=randon;

var carcar corflo faggra ileopa ligsty maggra nyssyl ostvir oxyarh
pingla quenig quenic syntin;

id ident;





	


	




The procedure that we will be using, shown above, is called fastclus, which stands for fast cluster analysis. This is designed specifically to develop results quickly especially with very large datasets. Remember, unlike the previous cluster analysis methods, we will not get a tree diagram out of this procedure.

First of all we need to specify the number of the clusters that we want to include. In this case we will ask for four. Then, we set replace=random, indicating the the initial cluster centroids will be randomly selected from the study subjects (sites). 

Remember, when you run this program you will get different results because a different random set of subjects will be selected each time.

The first part of the output gives the initial cluster centers. SAS has picked four sites at random and lists how many species of each tree there are at each site.

The procedure then works iteratively until no reassignments can be obtained. The following table was copied from the SAS output for discussion purposes. 

	Cluster
	Maximum Point to Centroid Distance
	Nearest Cluster
	Distance to Closest Cluster

	1
	21.1973
	3
	16.5910

	2
	20.2998
	3
	13.0501

	3
	22.1861
	2
	13.0501

	4
	23.1866
	3
	15.8186


In this case, we see that cluster 3 is the nearest neighboring cluster to cluster 1, and the distance between those two clusters is 16.591.

To set delta for the leader algorithm, however, we want to pay attention to maximum distances between the cluster centroids and the furthest apart site in that cluster. We can see that all of these maximum distances exceed 20. Therefore, based on these results, we will set the radius δ = 20. 

Now, we can turn to wood7.sas where this radius δ value is used to run the Leader Algorithmic approach. Here is the SAS program modified to accommodate these changes:

[image: image924.png]options 1s=78;
title "Cluster Analysis - Uoodyard Hammock - K-Neans”:

Eldata wood;
infile "D:\Statistics\STAT S05\data\uood.txt”;
input x y acerub carcar carcor cargla cercan corflo faggra frapen
ileopa ligsty lirtul maggra magvir morrub nyssyl osuame ostvir

oxyarb pingla pintae pruser quealb quehen quenig quemic queshu quevir
syutin ulnala araspi cyrrac:

arop acerub carcor cargla cercan frapen lirtul magvir morrub osmame pintae

pruser quealb quehen queshu quevir ulmala araspi cyrrac;

Elproc fastclus naxclusters=d radina=20 naxiter-100 out-clusts
var carcar corflo faggra ileopa ligsty maggra nyssyl ostvir oxyarh
pingla quenig quenic syntin;
id ident;




	


	




The fastclus procedure is used again only this time with the leader algorithm options specified.

We set the maximum number of clusters to four and also set the radius to equal 20, the delta value that we found earlier.

Again, the output produces the initial cluster centroids. Given the first site, it will go down the list of the sites until it finds another site that is at least 20 away from this first point. The first one it finds forms the second cluster centroid. Then it goes down the list until it finds another site that is at least 20 away from the first two to form the third cluster centroid. Finally, the fourth cluster is formed by searching until it finds a site that is at least 20 away from the first three. 

SAS also provides an iteration history showing what happens during each iterative of the algorithm. The algorithm stops after five iterations, showing the changes in the location of the centroids. In other words, convergence was achieved after 5 iterations. 

Next, the SAS output provides a cluster summary which gives the number of sites in each cluster. It also tells you which cluster is closest. From this it seems that Cluster 1 is in the middle because three of the clusters (2,3,and 4) are closest to Cluster 1 and not the other clusters. What is reported are the distances between the cluster centroids and their nearest neighboring clusters. i.e., Cluster 1 is 14.3 away from Cluster 4. These results from all four clusters has been copied from the SAS out put and placed in the table below: 

	Cluster
	Size
	Nearest Neighbor 
	Distance

	1
	28
	4
	14.3126

	2
	9
	1
	17.6003

	3
	18
	1
	19.3971

	4
	17
	1
	14.3126


In comparing these spacings with the spacing that we found earlier, you will notice that these clusters are more widely spaced than the previously defined clusters.

The output of fastclus also gives the results of individuals ANOVAs for each species. However, only the r2 values for those ANOVAs are presented. The r2 values are computed, as usual, by dividing the model sum of squares by the total sum of squares. These are summarized in the following table: 

	Code
	Species
	r2
	r2/(1 - r2) 
	F

	carcar 
	Ironwood 
	0.785 
	3.685 
	82.93 

	corflo 
	Dogwood 
	0.073 
	0.079 
	1.79 

	faggra 
	Beech 
	0.299 
	0.427 
	9.67 

	ileopa 
	Holly 
	0.367 
	0.579 
	13.14 

	liqsty 
	Sweetgum 
	0.110 
	0.123 
	2.80 

	maggra 
	Magnolia 
	0.199 
	0.249 
	5.64 

	nyssyl 
	Blackgum 
	0.124 
	0.142 
	3.21 

	ostvir 
	Blue Beech 
	0.581 
	1.387 
	31.44 

	oxyarb 
	Sourwood 
	0.110 
	0.124 
	2.81 

	pingla 
	Spruce Pine 
	0.033 
	0.034 
	0.76 

	quenig 
	Water Oak 
	0.119 
	0.135 
	3.07 

	quemic 
	Swamp Chestnut Oak 
	0.166 
	0.199 
	4.50 

	symtin 
	Horse Sugar 
	0.674 
	2.063 
	46.76 


Given r2 , the F-statistic can be obtained from the following formula: 
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where K-1 is the degrees of freedom between clusters and n-K is the degrees of freedom within clusters. 

In our example, n = 72 and K = 4. So, if we to take the ratio of r2 divided by 1-r2 and multiply and multiply the result by 68, and divide by 3, we arrive at the F-values in the table. 

Each of these F-values is going to be tested at K - 1 = 3 and n - K = 68 degrees of freedom and using the Bonferoni correction, the critical value for an α = 0.05 level test is F 3,68,0.05/13 = 4.90. Therefore, anything above 4.90 will be significant here. In this case the species in boldface in the table above are the species where where the F-value is above 4.90.

The next thing we want to do is to look at the cluster means for the significant species we identified above. Below we have listed these species along with the means for these species from the SAS output. As before, we have boldfaced the larger numbers within each row. As a result you can see that ironwood is most abundant in Cluster 3, Beech is most abundant in Cluster 1 and so forth... 

	
	Cluster

	Species
	1
	2
	3
	4

	Ironwood
	4.1
	7.2
	21.2
	2.1

	Beech
	11.1
	6.1
	5.7
	6.2

	Holly
	5.5
	5.9
	4.4
	13.2

	Magnolia
	5.3
	3.3
	2.8
	3.0

	Blue Beech
	4.5
	5.3
	2.4
	14.6

	Horse Sugar 
	0.9
	16.1
	0.6
	2.2


Now, in looking down the columns of the table we can characterize the individual clusters. We can see the following:

Cluster 1: Primarily Beech and Magnolia: There are the large canopy species typical of old-growth forest.

Cluster 2: Primarily Horse Sugar: These are a small understory species typical of small-scale disturbances (light gaps) in the forest. 

Cluster 3: Primarily Ironwood: This is an understory species typical of wet habitats. 

Cluster 4: Primarily Holly and Blue Beech: This is also an understory species typical of dry habitats.



Summary

In this lesson we learned about: 

· Methods for measuring distances or similarities between subjects; 

· Linkage methods for measuring the distances between clusters; 

· The difference between agglomerative and divisive clustering; 

· How to interpret tree diagrams and select how many clusters are of interest; 

· How to use individual ANOVAs and cluster means to describe cluster composition; 

· The definition of Ward's method; 

· The definition of the K-means method. 
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