Exercice 7 p
Corrections des exercices du livre p.135-137 sur l'énergie interne. Exercice 7 p.
135. a. Lorsque le lait à 20°C est placé au contact de l'air du réfrigérateur à 4°C,
...
Part of the document
Corrections des exercices du livre p.135-137 sur l'énergie interne Exercice 7 p.135 a. Lorsque le lait à 20°C est placé au contact de l'air du réfrigérateur à
4°C, un transfert thermique se produit du corps à la température la plus
élevée (le lait) vers le corps à la température la plus basse (l'air).
Donc, le lait cède de l'énergie au réfrigérateur : l'énergie interne du
lait diminue.
Au niveau microscopique, l'agitation moléculaire du lait va diminuer,
puisque la température du lait va diminuer. Donc l'énergie interne du lait,
qui vient de l'agitation thermique, va diminuer. b. Le lait va passer à l'état solide. Dans cet état, l'agitation
moléculaire est plus faible : on passe d'un état désordonné à un état
ordonné. Dans l'énergie interne du lait, qui est liée à l'agitation
thermique, va diminuer.
Exercice 9 p.135 Soit U l'énergie interne du bloc de laiton. a. Soit [pic]= 60 J la quantité de chaleur transférée. C'est une quantité
positive puisque gagnée par le système.
L'énergie interne du système augmente par transfert thermique : [pic]
Donc : [pic]60 J. b. Si la température du bloc diminue, alors l'agitation thermique diminue
au niveau microscopique et donc l'énergie interne du système diminue :
[pic] c. Ici, [pic]-80 J, c'est une quantité négative puisque perdue par le
système donc : [pic]- 80 J. d. La température du système augmente donc [pic] Exercice 10 p.136
Premier principe de la thermodynamique : [pic] a. Le système n'a reçu aucun travail de la part d'une force extérieure. Il
a reçu par transfert thermique une énergie de 50 J : son énergie interne a
augmenté de 50 J. b. Le système a reçu un travail de 50 J la part d'une force extérieure. Il
n'y a eu aucun transfert thermique et le système est donc thermiquement
isolé de l'extérieur. Son énergie interne a augmenté de 50 J. c. Le système a fourni un travail de 50 J à l'environnement (moteur par
exemple). Il n'y a eu aucun transfert thermique et le système est donc
thermiquement isolé de l'extérieur. Son énergie interne a diminué de 50 J. d. Le système a fourni un travail de 50 J à l'environnement. Il a reçu par
transfert thermique une énergie de 100 J : son énergie interne a augmenté
de 100-50 = 50 J. e. Le système a reçu un travail de 50 J la part d'une force extérieure. Il
a perdu par transfert thermique une énergie de 100 J : son énergie interne
a diminué de 50 J car 50-100 = - 50 J. Exercice 11 p.136 a. Les glaçons fondent : il y a un changement d'état. b. La température de la pièce est supérieure à celle des glaçons : il y a
un transfert thermique de l'air vers les glaçons. c. Les glaçons reçoivent de l'énergie puisque le transfert se fait du corps
à température plus élevée vers le corps à température plus basse : [pic]. d. Les molécules d'eau passent d'un état microscopique ordonné à un état
désordonné. Exercice 12 p.136 a. Le transfert thermique s'effectue de l'eau à 60°C vers le cylindre à
20°C. b. L'agitation moléculaire de l'eau, qui est supérieure à celle du cuivre
initialement, va diminuer. Les vibrations du cristal atomique du cuivre
vont augmenter. c. Le système cuivre reçoit 10 J donc la transfert thermique est compté
positivement : [pic]10 J d. Le système eau perd 10 J par transfert thermique : [pic]- 10 J Exercice 13 p.136 a. Le système choisi est l'eau. La résistance chauffante fournit de
l'énergie au système par transfert thermique. Le système ne perd pas
d'énergie vers l'extérieur puisque les parois du récipient sont isolées
thermiquement.
L'énergie interne du système augmente donc. b. Un réaction exothermique dégage de la chaleur : le système chimique
fournit de l'énergie à l'environnement par transfert thermique.
Le système eau va donc recevoir de l'énergie par transfert thermique : son
énergie interne va augmenter, et donc sa température. On va observer une
augmentation de la température du mélange. Exercice 14 p.136 a. L'archer (extérieur) fonrnit de l'énergie au système par travail.
L'énergie interne de l'arbalète augmente de 50 J : [pic]50 J. b. La batterie (le système) fournit de l'énergie à l'extérieur. L'énergie
interne de la batterie diminue de 100 J : [pic]- 100 J. c. L'eau (le système) fournit de l'énergie à l'extérieur par transfert
thermique. L'énergie interne de l'eau diminue de 50 J : [pic]- 50 J. Exercice 15 p.136 a. L'énergie interne de l'eau a augmenté puisque sa température, et donc
son agitation thermique, augmente. b. Au niveau microscopique, on augmente le désordre moléculaire : les
molécules d'un gaz s'agitent de façon plus désordonnée que les molécules
d'un liquide.
L'énergie interne de l'eau a donc augmenté en passant de l'état liquide à
l'état de vapeur.
Il faut donc transférer de l'énergie à l'eau par transfert thermique :
chauffer l'eau. Attention, la température de l'eau n'augmente pas pendant le changement
d'état : toute l'énergie fournie à l'eau est utilisée pour passer à l'état
désordonné du gaz. c. La température de la vapeur a augmenté, donc son agitation thermique
aussi : l'énergie interne de l'eau a par conséquent augmenté.
Les molécules d'eau se déplacent plus vite qu'auparavant. Exercice 16 p.136 a. Les molécules d'eau sont rigidement liées entre elles dans la glace :
elles oscillent autour d'une position moyenne.
Les molécules d'eau sont faiblement liées entre elles dans l'eau liquide :
elles se déplacent les unes par rapport aux autres. b. La glace est un état microscopique ordonné. L'eau liquide est un état
désordonné. c. Le désordre ayant augmenté, l'énergie interne du système augmente. Exercice 17 p.136 L'énergie qu'il faut fournir à 1,0 kg de glace pour la faire passer à
l'état liquide à température constante (0°C) vaut [pic]334 kJ.
Un glaçon de 20 g doit donc recevoir une énergie de [pic]6,7 kJ pour
fondre.
Donc : [pic]6,7 kJ. Exercice 18 p.137 a. Le système gaz reçoit 25 J par transfert thermique : [pic]25 J.
Il fournit 10 J par travail : [pic]- 10 J. b. Premier principe de la thermodynamique : [pic]
Donc : [pic]15 J. L'énergie interne du gaz augmente lors de cette transformation. Exercice 19 p.137 Le système étudié est l'ensemble des deux mains. Pour que les mains frottent l'une sur l'autre, les bras exercent sur elles
une force extérieure et fournissent un travail [pic]>0. Le frottement
engendré se traduit par une augmentation de l'énergie interne des mains. Exercice 20 p.137 a. L'énergie interne dépend de l'état du système : si l'état du système est
identique, alors l'énergie interne est la même : lors d'une transformation
cyclique, [pic]. b. Etape 1 : [pic]100 J. c. Si le système revient dans son état initial, alors son énergie interne
doit revenir à sa valeur initiale. Le système doit donc perdre de l'énergie
lors de cette étape. Si ce n'est par travail, c'est donc par transfert
thermique : le système va donc chauffer le milieu ambiant.
Etape 2 : [pic] puisque [pic].
Donc [pic]= - 100 J. Exercice 21 p.137 a. Il n'y a pas de transfert thermique entre le système gaz et
l'extérieur : [pic].
Premier principe de la thermodynamique : [pic].
Donc : [pic] avec [pic] > 0 puisque le gaz s'est déplacé dans le sens de
la force exercée.
Soit : [pic], l'énergie interne du gaz augmente. Au niveau microscopique, la compression du gaz se traduit par une agitation
thermique plus importante. En effet, la pression du gaz augmente et donc sa
température (loi des gaz parfaits).
Puisqu'il n'y a pas d'échange thermique avec l'extérieur la température du
gaz ne peut pas diminuer ainsi. b. [pic] A.N : [pic]10 J. Exercice 22 p.137 Le système étudié est le fluide de la machine thermique symbolisé par un
ovale. Toutes les grandeurs sont positives si l'énergie est fournie au
système, et négative si le système en fournit à l'extérieur.
L'extérieur comprend la source chaude et la source froide. a. [pic]1000 J (énergie reçue) et [pic]- 750 J (énergie fournie). b. L'énergie interne dépend de l'état du système. Comme le fluide revient
dans son état initial, l'énergie interne n'a donc pas varié au cours d'un
cycle : [pic] c. Le système fournit de l'énergie au milieu extérieur par travail : [pic]. d. Premier principe de la thermodynamique : [pic]. Or : [pic] et [pic] donc : [pic] Soit [pic] A.N : [pic]-250 J Si on se place du point de vue de l'extérieur, la machine convertit donc
250 J d'énergie thermique en énergie mécanique fournie à l'extérieur par
travail moteur de la machine au cours d'un cycle. e. Par définition, la puissance est le débit de l'énergie, soit ici le
travail fourni par la machine sur la durée :
[pic] avec [pic]s et [pic]kJ Soit : P = 13,8 kW.
f. Le rendement vaut [pic] soit r = 0,25 d'où 25%
La machine transforme un quart de l'énergie reçu en travail et dissipe le
reste (trois quarts) en chaleur.
C'est un mauvais rendement. C'est pourtant celui (30% au mieux) des moteurs
thermiques actuels.
Les moteurs électriques font beaucoup mieux (90%) mais l'énergie électrique
se stocke très mal...
-----------------------
Source froide Q2 < 0 : perte d'énergie par transfert thermique Q1 > 0 : gain d'énergie par transfert thermique W < 0 : perte d'énergie par travail Source chaude cuivre à 20°C
Eau à 60°C Q < 0 : perte d'énergie par transfert thermique Q > 0 : gain d'énergie par transfert thermique W < 0 : perte d'énergie par travail W > 0 : gain d'énergie par travail