Exercice 1

... de l'atome de lithium de numéro atomique Z=3, de formule électronique K2L1.
... Faire l'application numérique. corrigé. Exercice 1. Les échanges d'énergies ...

Part of the document


Exercice 1
Données : célérité de la lumière dans le vide :3 108 m/s; constante de
Plank : h=6,62 10-34 Js ; charge élémentaire : e = 1,6 10-19 C ; masse de
l'électron m = 9 10-31 kg.
La figure représente un diagramme très simplifié des niveaux d'énergie de
l'atome de lithium de numéro atomique Z=3, de formule électronique K2L1.

On considère les quatre transitions représentées sur le diagramme. Les
longueurs d'ondes correspondantes sont ?1 = 671 nm ; ?2 = 812 nm ; ?3 = 323
nm et ?4 = 610 nm.
1. Expliquer brièvement niveau d'énergie et spectres de raies.
2. Montrer qu'entre l'énergie E(en eV) d'un photon et sa longueur d'onde
? il existe la relation E= 1240 / ? . ? étant exprimé en nm et E en
eV.
- Déterminer l'énergie ( eV) des photons émis lors de chacune des 4
transitions.
3. L'énergie du niveau I vaut E1 = - 5,39 eV. C'est l'énergie de
l'électron externe dans son état fondamental. Affecter l'énergie Ei
(eV) à chaque niveau du diagramme.
4. Pour quelle valeur de la longueur d'onde des radiations incidentes les
atomes de lithium subiront-ils une ionisation à partir de l'état
fondamental ?

Exercice 2
Niveaux d'énergie de l'atome d'hydrogène
On s'intéresse dans ce qui suit aux niveaux d'énergie des atomes
d'hydrogène et de sodium, tous deux éléments de la première colonne du
tableau de classification périodique.
1/ Les niveaux d'énergie de l'atome d'hydrogène sont donnés par la
relation : En=-13,6/n² où En en eV et n un entier naturel non nul.
1-1 Déterminer l'énergie minimale en eV, qu'il faut fournir à l'atome
d'hydrogène pour l'ioniser dans les cas suivants :

1-1.1 L'atome d'hydrogène est initialement à son état fondamental (n = 1)
1-1.2 L'atome d'hydrogène est à l'état excité correspondant au niveau
d'énergie(n = 2).
1-2 Faire le schéma du diagramme des niveaux d'énergie de l'atome
d'hydrogène en utilisant l'échelle :
1 cm pour 1 eV. On ne représentera que les six premiers niveaux.
2/ On donne ci-après le diagramme simplifié des niveaux d'énergie de l'a
tome de sodium (l'échelle n'est pas respectée).
L'état fondamental correspond au niveau d'énergie E1. Les niveaux d'énergie
E2et E3 correspondant à des états excités.
2-1 Lorsque l'atome passe de E2 à E1 il émet une radiation de longueur
d'onde ?1=589 nm ;;
lorsqu'il passe de E3 à E2, il émet une radiation de longueur d'onde ?
2=568,8nm.
En expliquant le raisonnement, calculer la différence d'énergie (E3-E1) en
eV.
2-2 Lorsque l'atome, initialement dans son état fondamental, est éclairé
par un faisceau monochromatique de longueur d'onde ? convenable, il peut
directement passer du niveau d'énergie E1au niveau d'énergie E3.
Exprimer la longueur d'onde ? de ce faisceau en fonction des longueur
d'onde ? 1et ? 2. Faire l'application numérique




corrigé

Exercice 1
Les échanges d'énergies entre la lumière et la matière ne se font pas de
manière continue mais par quantité élémentaire.
Une transition atomique est le passage d'un état d'énergie à un autre.
La fréquence d'un photon émis ou absorbé est reliée aux énergies En et Ep
par la relation de Bohr :
[pic]
Chaque raie d'un spectre est associée à l'émission ou l'absoption d'un
photon lors d'une transition atomique.
[pic]
hc = 6,62 10-34*3 108 = 1,986 10-25
E : diviser par 1,6 10-19 pour passer des joules aux électrons volts :
multiplier par 109 pour passer des mètres aux nanomètres.
E ( en eV ) = 1,986 10-25 *109 / 1,6 10-19 = 1241.
|E |1,84|1,52|3,8|2,0|
|(eV) |8 |3 |4 |3 |
|? |671 |812 |323|610|
|(nm) | | | | |


1,848 eV : différence d'énergie entre le niveau fondamental et l'état
excité n=2 donc
E2 = -5,39 + 1,848 = -3,54 eV
1,523 eV : différence d'énergie entre le niveau excité n=3 et l'état excité
n=2 donc
E3 = -3,54+ 1,523 = -2,02 eV
3,84 eV : différence d'énergie entre le niveau fondamental et l'état excité
n=4 donc
E4 = -5,39 + 3,84 = -1,55 eV
2,03 eV : différence d'énergie entre le niveau excité n=5 et l'état excité
n=2 donc
E5 = -3,54+ 2,03 = -1,51 eV
à partir de l'état fondamental, il faut fournir une énergie minimale de
5,39 eV pour ioniser l'atome.
E= 5,36 eV = 5,39*1,6 10-19 = 8,624 10-19 J
E = hc / ? soit ? = hc/E = 6,62 10-34*3 108 /8,624 10-19= 2,3 10-7 m.