Loi exponentielle

Quelques exercices sur les lois exponentielles ... Exercice 2. La durée de vie en
année X d'un composant électronique suit une loi exponentielle de paramètre .
Par expérience, on sait qu'au bout d'un an, ... Quelle est la durée de demi-vie (c'
est-à-dire la durée pour laquelle la probabilité de survie est égale à 0,5) ?

Part of the document


Loi exponentielle Activité d'approche : modélisation discrète d'un processus de Poisson On choisit n nombres entiers naturels au hasard de façon équiprobable dans
l'intervalle [1 ; n].
Soit X la variable aléatoire prenant pour valeur le plus petit de ces n
entiers naturels. 1. Un exemple : 100 personnes arrivent au hasard à l'instant t ( [1 ;
100], t entier naturel.
On note X la variable aléatoire prenant pour valeur l'instant d'arrivée
t0 de la première personne.
a) Simuler l'expérience aléatoire avec un tableur.
b) Simuler 1000 expériences analogues.
2. Cas général : n est un entier naturel quelconque
a) Déterminer [pic].
b) Déterminer pour k entier naturel, k([1 ; n], la probabilité [pic].
c) Quelle est la limite de la suite [pic]de terme général [pic][pic] ?
d) En déduire que, pour n assez grand, [pic].
e) Déterminer une fonction f telle que [pic] et telle que f soit une
densité de probabilité sur [0 ; +?[. Quelques exercices sur les lois exponentielles
Exercice 1 : simulation d'une loi exponentielle
Soit [pic] un réel strictement positif donné.
Montrer que si une variable U suit la loi uniforme sur [0 ; 1], alors la
variable [pic] suit
la loi exponentielle de paramètre [pic].
Vérifier ce résultat à l'aide d'une simulation. Exercice 2
La durée de vie en année X d'un composant électronique suit une loi
exponentielle de paramètre (.
Par expérience, on sait qu'au bout d'un an, 80 % des composants sont en
panne.
1. Traduire l'information précédente en terme de probabilité et
déterminer alors la valeur de (.
2. Déterminer la probabilité qu'un composant ait une durée de vie
supérieure à 1 an, supérieure à 2 ans.
3. Quelle est la durée de demi-vie (c'est-à-dire la durée pour laquelle
la probabilité de survie est égale à 0,5) ?
4. Sachant que le composant a déjà fonctionné un an, quelle la
probabilité qu'il fonctionne au moins une année de plus ? Que remarque-
t-on ?
Exercice 3
La durée de vie X d'un composant, exprimée en jour, est une variable
aléatoire qui suit une loi exponentielle de paramètre 0,005. 1. Étude d'un seul composant.
a) Calculer la probabilité de l'événement : « la durée de vie excède 300
jours ».
b) Déterminer la valeur ( de la demi-vie.
c) Déterminer l'espérance de vie d'un composant.
2. Montage de deux composants en parallèle.
Pour assurer une plus grande longévité à un montage, on remplace le
composant par deux composants identiques montés en parallèle.
Dans ce cas, le système est défaillant lorsque les deux composants sont
en panne.
On admet l'indépendance des pannes des deux composants.
On note [pic] et [pic] les durées de vie de chaque composant, et T celle
du système.
a) Déterminer [pic].
b) Quelle est la probabilité que le système fonctionne plus de 300
jours ?
c) Déterminer la valeur [pic] de la demi-vie du système.
3. Les deux composants sont maintenant montés en série.
a) Déterminer la loi de probabilité de la variable aléatoire Y qui mesure
la durée de vie du système.
b) Quelle est la probabilité que le système fonctionne plus de 300
jours ?