Prime Spacing and the Hardy-Littlewood Conjecture B

David Schmidt

I.  Introduction


For junior seminar I used a computer program to generate large primes and then tested to see if prime spacings were exponentially distributed, if the spacings between successive k-spacings for a given k were exponentially distributed, and to test the Hardy-Littlewood Conjecture B.  All three appeared to hold.  Large numbers (on the order of 1015) were tested for primality using the java math library function IsProbableprime.  I chose to start at a large number (1015) and then consider a smaller block of numbers (107) around that large number so that normalizing term (1/logn) would be constant, and also because I felt that while a number of experiments had considered all primes up to a given number, fewer had considered a block of numbers around a much larger number.

II.  Theoretical Background


There are two major theoretical results that are very related to these problems of prime spacing and distribution.  The first is the Prime Number Theorem, and the second is the Hardy-Littlewood Conjecture B.  For the Prime Number Theorem I will follow the treatment of A. E. Ingham in his book “The Distribution of Prime Numbers”, and for the Hardy-Littlewood Conjecture B, I will present a heuristic proof that can also be found in Michael Rubinstein’s paper “A Simple Heuristic Proof of Hardy and Littlewood’s Conjecture B.”  For a different treatment of the Conjecture, another good source is the paper in which the Conjecture was first printed, namely “Some Problems of ‘Partitio Numerorum’; III: On the Expression of a Number as a Sum of Pri​mes” by Hardy and Littlewood.
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The Prime Number Theorem states that ((n) is asymptotic to n/log(n) as n((, where ((n) is defined to be the number of prime numbers less than or equal to n.  To begin the proof we start by defining two other related functions, Chebychev’s functions ((n) and ((n) as 
where the first extends over every combination of prime p with a positive integer m for which pm≤n.
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We wish to compare the values of these functions with ((n), so we notice that

with the right hand side only containing a finite number of non-zero terms, because ((n) = 0 when n<2.
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If instead we group terms where p has the same value we obtain

as the number of m corresponding to a given p is the number of m satisfying mlog(p) ( log(n).


We now further specify the exact nature of the correspondence between ((n), ((n), and ((n).

Theorem 1.  The three quotients ((n)/n(logn)-1      ((n)/n      ((n)/n    all have the same limits of indetermination as n((.
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Let the upper limits be A1, A2, A3 and the lower limits be B1, B2, B3, respectively.  From the above equations, we have

[image: image6.wmf])

log(

))

(

)

(

(

log

)

(

a

a

n

p

n

n

n

n

p

n

a

p

p

J

-

³

³

å

£

<

thus A2(A3(A1 and if 0<a<1, n>1,
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then, since ((na)<na,

Keeping a fixed, let x((, since (logn)/n1-a((, we get A2(aA1, thus A2(A1 since a can be taken arbitrarily close to 1.  This with the above yields A2 = A3 = A1.  Notice that A can be replaced with B throughout.

[image: image8.wmf]å

¥

=

-

=

1

)

(

n

s

n

s

z

[image: image9.wmf]it

s

+

=

s


In proving the Prime Number Theorem we also consider another very important function, namely the Riemann ( function

As this function appears only well defined in the half plane (>1, we must consider analytic continuation.

Theorem 2.  The function ((s), defined for (>1, admits of analytic continuation over the half plane (>0, as a single-valued function having as its only singularity in this half plane a simple pole with residue 1 at s=1.

[image: image10.wmf][

]

[

]

s

X

s

X

n

s

X

X

dx

x

x

s

n

+

=

ò

å

+

£

-

1

1


From our background with series we know if X(1
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Then writing [x] = x – (x), so that 0(x<1, yields
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Since(1/Xs-1( = 1/X(-1 and ((X)/Xs( <1/X(, we get, making X((, if (>1.

Then, since ((x)/xs+1( < 1/x(+1, the last integral is uniformly convergent for ( > (, with ( any fixed positive number, and therefore represents a regular function of s in ( > 0.


Next we need to develop some bounds upon ((s).  A denotes a positive constant.

Theorem 3.  (((s)( < Alog(t)
(((1, t(2),


       ((’(s)( < Alog2(t)
(((1, t(2),


       (((s)( < A(()t1-(
((((, t(1)  if 0<(<1
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From above we have


Analysis of this expression and its derivative will lead to the desired inequalities.


Next we need consider the zeros of ((s) because they will be the singularities of -(’(s)/((s).  Euler’s product ((s) = ( (1-p-s)-1 implies that there are no zeros in the half plane (>1, but does not tell us about points not in this domain.  Thus we need

Theorem 4.  ((s)has no zeros on the line ( = 1.  Further1/((s) = O((logt)A) uniformly for ((1, as t((.
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The proof is based on the inequality 3 + 4cos( + cos2( ( 0, which holds for all real (, since the left hand side is 2(1+cos()2.  Now, taking logs of the summation formula for ((s) gives

where cn is 1/m if n is the mth power of a prime, and 0 otherwise.  Thus, since cn > 0,
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for ( > 1.  This means that 1+it cannot be a zero of ((s), because if it were, then since ((s) is regular at 1+it and 1+2it, and has a simple pole at 1, the left hand side would tend to a finite limit, and the right hand side to infinity when ((1+0.
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Now, in proving the rest of the theorem we may suppose 1 ( ( ( 2, since when ( ( 2
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If 1 ( ( ( 2, t ( 2, then from above we have
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So, since log(2t) ( logt2 = 2logt
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Now, let 1 < ( < 2, then if 1 ( ( ( (, t ( 2
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Now choose ( = ((t) so that 
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assuming t large enough to ensure ( < 2.  Then 
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Now that we have established enough properties of the ( function, we look to deduce from them properties of ((n).  They are related as
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For s>1.  Now, to avoid problems of convergence, instead of working directly with ((n) we will work with
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We shall first prove the formula


Where x > 0, c > 1, and the path of integration is the line ( = c.  The proof is based on 

Theorem A.  If k is a positive integer, c>0, y>0, then
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If y ( 1, and 0 if y ( 1.  Notice that the integral is absolutely convergent, so denote by J the infinite integral and by JT the integral from c-iT to c+iT.  Cauchy’s theorem of residues allows us to replace the line of integration in JT by an arc of the circle C with center s = 0 and passing through the points s = c ( iT.  If y(1, we use the arc C1 which lies to the left of the line ( = c, assuming T so large that R>2k, where R is the radius of C.  This gives JT = S + J(C1), where S is the sum of the residues of the integrand at its poles 0, -1, -2, …, -k, and J(C1) is the integral along C1.  Now on C1 we have ( ( c, and so (ys( = y( ( yc, since y ( 1.  Also, (s+n( ( R-k > R/2.  It follows that
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So by JT  = S+J(C1), JT(S as T((, so J=S.  But,

Which proves the theorem when y ( 1.  For the case y ( 1 the proof is similar except that the right hand arc is used, and no poles are passed over.
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To deduce the full desired result we have for x > 0, by Theorem A, if c > 0,
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If c>1 the order of summation and integration may be interchanged, yielding the desired result


Finally now we are prepared to take the crucial step in the proof of the Prime Number Theorem, developing an asymptotic formula for (1(x).

Theorem 5.  We have (1(x) asymptotic to x2/2 when x((.
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Suppose throughout x>1.  We have from before where c > 1, and (c) denotes the line ( = c,

By theorems 2,3, and 4, g(s) is regular in ( ( 1, except at s = 1, and 
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Now take ( > 0, and take the infinite broken line L1 + L2 + L3 + L4 + L5 where L1 is the line from 1-i( to 1-iT, L2 from 1-iT to a-iT, L3​ from a-iT to a+iT, L4 from a+iT to 1+iT, and L5 from l+iT to 1+i(, and where T = T(() is chosen so that 

and then a = a(T) = a(() (0 < a < 1) so that the rectangle cut into the critical strip contains no zeros.  The first choice is possible because of the constraint on g, the second because ((s) has no zeros on the line ( = 1 and (since it is regular) is zero at a finite number of places in the region ½ < ( < 1.  
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By Cauchy’s theorem we obtain

with the term ½ coming from the pole at 1.  Now, by our choice of L the integrand is regular between and on the lines (c) and L (except at s = 1) and integrating around a closed contour bounded by portions of (c) and L and by segments of the lines t = (U, where U>max(t​0,T), the integrals along the latter segments are
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and thus tend to 0 when U((.
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Now consider J = J1 + J2 + J3 + J4 + J5 where Jn is the integral around Ln.  Since g(s)xs-1 takes conjugate values for conjugate values of s,
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And also, since x > 1,
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Where M = M(T,a) = M(() is the maximum of (g(s)( on the finite segments L2, L3, L4.  So we have
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And thus (1(x)/x2 ( ½ as x((.  The final step is to deduce from this, the corresponding relation for ((n).  For this we need
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Theorem B.  Let c1, c2, … be a given sequence of numbers, and let
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If cn ( 0 (n=0,1,2,…), and C1(x) is asymptotic to Cxc as x((, where C and c are positive constants, then C(x) is asymptotic to Ccxc-1.

Let 0 < a < 1 < b.  Since cn​ ( 0, C(u) is an increasing function, hence for x > 0,

Let x((, keeping b fixed, then since C1(y)/yc(C when y((
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By considering the interval (ax,x) we similarly arrive at
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By taking a and b very near to 1 we can make the two right hand sides very near to Cc, thus
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So then with Theorem B, and Theorem 5, and Theorem 1 we arrive at the desired result, the Prime Number Theorem, namely that ((n) is asymptotic to n/log(n).
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The other major theoretical topic to be discussed is the Hardy and Littlewood Conjecture B, which states that there are infinitely many prime pairs (p, p+m) for every even m.  If (m(n) is the number of pairs less than n, then (m(n) is asymptotic to
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Two outside mathematical ideas will be needed in our consideration of this problem.  The first is given a set A = {1,2,…,a}, and two subsets of A, call them B and C where B has b elements and C has c elements, then if the elements in C were chosen randomly, with a uniform distribution over the elements of A, then the expected number of elements in B(C is equal to bc/a.  The second result is mathematically much deeper, and is known as Dirichlet’s Theorem.  It states that given an arithmetical progression ak + b, where (a,b) = 1, then summing over primes p ( x, p of the form ak + b is asymptotic to

For a proof of this result, see Apostol, “An introduction to Analytic Number Theory”.
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Armed with these two ideas, let us consider the matter at hand.  Take the following two pairs of arithmetical progressions:  (2k + 0), (2k + 2) and (2k + 1), (2k + 3) where k = 0,1,2,…  All twin primes will be in the pair (2k + 1), (2k + 3).  Thus counting the number of twin primes is equivalent to counting the number of time 2k + 1 and 2k + 3 are simultaneously prime.  If we assume that any value of k is equally likely to make 2k + 1 prime and similarly for 2k + 3, then applying our two mathematical ideas yields (2(x) asymptotic to

In the above, the x/(log(x))2 coincides with the conjectured result, but the factor of 2 does not, and the problem with the reasoning that led to this result is that it assumed all values of k were equally likely to lead to a prime, which is not the case.  We can improve on this however by considering progressions modulo 6 instead of modulo 2, that is, the pairs {(6k + 0), (6k + 2)},{(6k + 1), (6k +3)}, …,{(6k + 5), (6k + 7)}.  Here we can eliminate all pairs except (6k + 5), (6k + 7), and then again applying our two ideas yields 
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which is closer, but still not there yet.  Luckily we can continue to improve things, this time considering all pairs modulo 30 instead of 6, that is {(30k + 0), (30k + 2)}, {(30k + 1), (30k + 3)},…, {(30k + 29), (30k + 31)}.  This time, the only pairs that contribute are {(30k + 11), (30k + 13)},{(30k + 17), (30k + 19)}, and {(30k + 29), (30k + 31)}  (with the exception of k = 0 yielding things like 3,5)  Once again, by our two ideas, for each pair we get

[image: image52.wmf]2

2

2

2

2

)

(log

))

5

3

2

(

(

)

5

3

2

)(

5

3

2

(

lim

)

5

3

2

)

log

)

5

3

2

(

(

)(

5

3

2

(

lim

x

x

p

p

p

p

x

x

p

x

p

k

k

k

k

k

k

k

k

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

=

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

¥

®

¥

®

f

f

f

f

and having 3 pairs contributes a factor of 3 in front.  Still though, we are not done.  If we continue this method indefinitely however we get that (2(x) is asymptotic to
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where (2(n) denotes the number of pairs c, c + 2 where (n,c) = (n, c + 2) = 1 and 0 ( c ( n-1.  One would note that we are not entirely justified in passing to the limit because the a in Dirichlet’s theorem cannot be infinite, however, since this is purely heuristic, the details are omitted.  That leaves one last problem to cover for the twin prime case, and that is
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Lemma 1.  Given n = p1a1p2a2p3a3…pjaj where the pi’s are arbitrary primes and all a(1, then

Two steps are required for proof.

a) Show that if p = 2 then (2(pa) = pa-1 and if p > 2 then (2(pa) = pa-1(p – 2)

b) Show that if (a, b) = 1 then (2(ab) = (2(a)(2(b)

Proof of a):  If p > 2 then of the integers 0,1,2, …, pa-1 exactly pa-1 integers are not relatively prime to pa, namely 0, p, 2p, …  Each of these kills 2 arithmetic progressions, and so (2(pa) = pa – 2pa-1 = pa-1(p – 2).


If p = 2, then each multiple of p only kills one pair of arithmetic progressions, and so (2(pa) = pa – pa-1 = pa-1 (since p = 2).

Proof of b):  Take the integers 0,1,2,3,…, ab-1 and partition them as follows:  put 0,1,2, …, a – 1 into A1, put a,a+1,…2a – 1 into A2, and so forth.  Now, in each Ai there are (2(a) pairs c, c + 2 where (i – 1)a ( c ( ia –1, such that (a, c) = (a, c + 2) = 1.  Each pair appears b times modulo a (once in each Ai).  We need to know how many of these pairs are relatively prime to b.  For any pair c, c + 2 with 0 ( c ( a –1 we list the b times that it appears modulo a:  c, c + 2, a + c, a + c + 2, …, (b – 1)a + c + 2.  In examining these pairs modulo b we notice that since (a, b) = 1 they run through all pairs j, j + 2 mod b.  Thus of the listed pairs, exactly (2(b)  are relatively prime to b, so the total number of pairs relatively prime to a and b is (2(a)(2(b).  This lemma, with the expression from before yields the desired result for twin primes.  It can be quickly verified that similar argument with (m(pa) for m an even number will yield the desired more general result.

III.
Results


As for my program itself, the first thing that was checked was if the occurrence of primes was indeed a poisson random process, that is, that the occurrence of primes was random with an exponential distribution.  My results show that if I count the occurrences of prime spacing, heaped into bins each of length log(n), then the data looks like
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which clearly appears to be falling off exponentially.  In fact, if instead I call 2 prime numbers spaced k apart “k-primes” and then I asked how successive k-primes are distributed, I would again expect this kind of exponential distribution, at least if I bunch them into heaps.  Further, the decay of these would be much slower, and so would likely be more interesting.  If I inspect for example the distribution of 6-primes it looks like
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or the distribution of 22-primes for that matter
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also appears exponential, although not quite so smoothly distributed.


Indeed, as can be checked from the raw data of the output of the program, all the distributions of k-primes look something like this.
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Finally, I considered how closely the Hardy-Littlewood Conjecture B appeared to hold.  For the following table I took (2, the number of 2-spaced primes in my range, as a normalizing constant.  That is, recall that the Conjecture states that (m(n) is asymptotic to

[image: image59.wmf]å

£

=

n

p

p

n

)

log(

)

(

J

so thus (2(n) is asymptotic to 2C2n/(log2n).  So then given (2, the number of twin in the range, a reasonable prediction for the number of k-spaced primes in a range following the Hardy-Littlewood Conjecture is

This is exactly what I took for the predicted value on the following table.  “Actual” refers to the number k-spaced primes that I counted in a range of 2x107 starting at about 1015.

Spacing
Predicted
Actual
Actual/Predicted

6
40528
40770
1.006

8
20264
20332
1.003

18
40528
40697
1.004

28
24317
24438
1.005

30
54037
54216
1.003

34
21615
21699
1.004

40
27019
26969
.998

44
22516
22839
1.014

46
21229
21416
1.009


I found that the predicted Hardy-Littlewood numbers matched very closely with the observed Hardy-Littlewood numbers.


I felt that while prime numbers are something that have been studied for a quite some time, the two distinguishing characteristics of this experiment were first that the primes considered were not starting from 3, but instead started from about 4.3 x 1015, and second that the prime numbers considered were so large.  Because the method for testing for primality was not direct factorization, but instead was a probabilistic check that through both a test that is based on Fermat’s Little Lemma and another test for Carmichaelness, the program was able to check with relative speed whether a number was prime with probability of error 1 in about 1014.  Indeed, because primality testing was relatively fast, I found that I was not sure if the limiting factor in looking at even bigger numbers was the primality testing or the manipulations that had to occur with very large numbers.  Something to consider for the future is how one might minimize the amount of bignumber calculations that need to occur in order to do accounting to keep track of all the prime spacing information.


I decided to program in java as opposed to a traditionally faster language such as C, or a more math oriented language such as Matlab or Mathematica because java’s math library has powerful functions that are able to work with arbitrary length integers and most importantly because the math library had a function that could test for primality.  Without needing to test for primality code myself, I saved myself a great deal of time in coding, and further because java’s method is probabilistic, a great deal of time in computation as well.  When I ran code looking at a range of numbers starting from the order of 1015 and a block of length 2 x 107 it would take approximately 3 hours to finish running.  I ran the code on the arizona servers, and generally had about 5 to 10 percent of the CPU and would use approximately 25 Mb of Ram because the spacing information was stored in a large array of BigIntegers.  I would pipe the output into a text file, and the text file would be about 600 Kb when the program was finished.  Needless to say, far more information was stored than appeared in the paper; this additional information was a combination of the fact that I kept track of all even prime spacings from 2 to 298, and that I stored both the heaped data and the raw data.

IV. Code

import java.math.*;

import java.io.*;

public class prime{


public static void main(String[] args){


try{



    BigInteger i,j,k,lprime;    /* temporary variables.  lprime will store the last prime */


    int pout,pout1;


    int temp,temp1,temp2,index;


    int sprimes[] = new int[1226];  /* an array to count the number of primes of a given spacing */


    int tspacing[] = new int[150];  /* total number of k-spaced primes */


    int primeheap[] = new int[68];  /* array that is formed when the primes are heaped into bins of length log(n)*/


index = 0;


i = new BigInteger("2");


j = i.add(i);


k = new BigInteger("20000000");  /* the length of the block of numbers we will consider */


BigInteger spacing [][] = new BigInteger[150][1226];  /* 2 dimensional array that stores how many k-primes are a length n apart */


BigInteger primes[] = new BigInteger[14];  /* array storing the most recent 14 prime numbers */


BigInteger spacingheap[][] = new BigInteger[150][68];  /* heaped version of spacing, in bins of length log(n) */


lprime = new BigInteger("0");


BigInteger total = new BigInteger("4311668367658797");  /* the number to start at.  Picked so that log(n) = 36 */


/* here are a number of for loops that fill all the above arrays with 0. */


for(pout1 = 0;pout1<1226;pout1++)


{for(pout = 0;pout<150;pout++)


    spacing[pout][pout1]=new BigInteger("0");


}


for(pout = 0;pout<150;pout++){


    for(pout1 = 0;pout1<68;pout1++)



{spacingheap[pout][pout1] = new BigInteger("0");}}


for(pout1 = 0;pout1<68;pout1++)


    primeheap[pout1] = 0;


for(pout1 = 0;pout1<150;pout1++)


    tspacing[pout1] = 0;


for(pout1 = 0;pout1<1226;pout1++)


    sprimes[pout1] = 0;


/* In this while loop I fill the primes array with the first 14 primes */


while(index<=13){    


     if(total.isProbablePrime(45)==true)



 {   



     primes[index] = total;



     index++;



 }


     total = total.add(i);


     j = j.add(i);
     


}


index = 0;     


lprime = primes[13];


/* This is the main loop.  I essentially start from n and keep adding 2, at each step checking the number for primality.  If the number is prime then I check it against each of the most recent 14 primes to see what the spacing was, and then for that given spacing, I increment the distance between this and the previous spacing, and update the most recent occurrence of the spacing.  I also increment the total number of occurrences of a given spacing.  Then at the end I update the most recent prime array by including the new prime.  */


for(;j.compareTo(k)!=1; j = j.add(i))


{


    if(total.isProbablePrime(45)==true)



{



    temp1 = total.subtract(lprime).intValue()/2;



    if(temp1<1000)




sprimes[temp1]++;



    lprime = total;



    for(temp = 0;temp<=13;temp++)



    {
       





temp2 = total.subtract(primes[temp]).divide(new BigInteger("2")).intValue();




if(temp2<150)

                           {




       tspacing[temp2]++;




       if(primes[temp].subtract(spacing[temp2][0]).compareTo(new BigInteger("2447"))!=1){





   spacing[temp2][(primes[temp].subtract(spacing[temp2][0]).intValue())/2] = spacing[temp2][(primes[temp].subtract(spacing[temp2][0]).intValue())/2].add(new BigInteger("1"));




       }




       spacing[temp2][0] = primes[temp];




   }



    }



    primes[index] = total;



    index++;



    index = index%14;



}



    total = total.add(i);


}


/* Finally here I output all the gathered data, first by forming the heap arrays and then by printing them out, followed by the full data from the larger arrays in case I want to look at the more raw data.  The text file is usually about 600 Kb.  */


System.out.println("heaped primes");


for(pout1 = 0;pout1<68;pout1++)


    {temp1 = 0;


    for(pout = 1;pout<19;pout++)



{temp1 += sprimes[pout1*18 + pout];}


    primeheap[pout1] = temp1;


    System.out.print(temp1 + "  ");}


System.out.println();


System.out.println("heaped spacings");


for(temp = 1;temp<150;temp++){


    System.out.println("\n" + temp);


    for(pout1 = 0;pout1<68;pout1++){



i = new BigInteger("0");



for(pout = 1;pout<19;pout++)



    i = i.add(spacing[temp][pout1*18 + pout]);



spacingheap[temp][pout1] = i;



System.out.print(i + "  ");


    }


}


System.out.println();


System.out.print("prime spacings\n");


for(pout = 0;pout<1226;pout++)


    System.out.print(sprimes[pout]+"  ");


System.out.print("\n");


System.out.println("spacing totals");


for(pout = 0;pout<150;pout++)


    System.out.print(tspacing[pout]+"  ");


System.out.print("\n");


for(pout1 = 1;pout1<150;pout1++){


    System.out.println(pout1);


    for(pout = 0;pout<1226;pout++)



System.out.print(spacing[pout1][pout]+"  ");


    System.out.print("\n");


    }


System.out.println("\n");


}catch(Exception e){}


}}
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