Chapter 1
Graph Algorithms

Chapter 1

PATHS IN GRAPHS

1.1 INTRODUCTION TO GRAPH THEORY

A graph G(V, E) is a structure which consists of a set of vertices V = {v1, v2, ...} and a set of edges E = {e1, e2, ...}; each edge e is incident to the elements of an unordered pair of vertices {u, v} which are not necessarily distinct.

Unless otherwise stated, both V and E are assumed to be finite. In this case we say that G is finite.

For example, consider the graph represented in Figure 1.1. Here V = {v1, v2, v3, v4, v5}, E = {e1, e2, e3, e4, e5}. The edge e2 is incident to v1 and v2, which are called its endpoints. The edges e4 and e5 have the same endpoints and therefore are called parallel edges. Both endpoints of the edge e1 are the same; such an edge is called a self-loop.

The degree of a vertex v, d(v), is the number of times v is used as an endpoint of the edges. Clearly, a self-loop uses its endpoint twice. Thus, in our example d(v4) = 1, d(v2) = 3 and d(v1) = 4. Also, a vertex v whose degree is zero is called isolated; in our example v3 is isolated since d(v3) = 0.

Lemma 1.1: The number of vertices of odd degree in a finite graph is even.

Proof: Let |V| and |E| be the number of vertices and edges, respectively. Then,

[image: image9.png]

[image: image1.wmf](

)

d

v

E

i

i

V

=

å

=

×

1

2

|

|

|

|

,

since each edge contributes two to the left hand side; one to the degree of each of its two endpoints, if they are different, and two to the degree of its endpoint if it is a self-loop. It follows that the number of odd degrees must be even.

Q.E.D.

The notation u_e_v eans that the edge e has u and v as endpoints. In this case we also say that e connects vertices u and v, and that u and v are adjacent.

A path is a sequence of edges e1, e2, ... such that:

(1) ei and ei+1 have a common endpoint;

(2) if ei is not a self-loop and is not the first or last edge then it shares one of its endpoints with ei-1 and the other with ei+1.

The exception specified in (2) is necessary to avoid the following situation: Consider the graph represented in Figure 1.2.

[image: image2.png]Figure 1.1

We do not like to call the sequence e1, e2, e3 a path, and it is not, since the only vertex, b, which is shared by e1 and e2 is also the only vertex shared by e2 and e3. But we have no objection to calling e1, e4, e3 a path. Also, the sequence e1, e2, e2, e3 is a path since e1 and e2 share b, e2 and e2 share d, e2 and e3 share b. It is convenient to describe a path as follows:

. Here the path is e1, e2, ..., el and the endpoints shared are transparent; v0 is called the start and vl is called the end vertex. The length of the path is l.

A circuit is a path whose start and end vertices are the same.

A path is called simple if no vertex appears on it more than once. A circuit is called simple if no vertex, other than the start-end vertex, appears more than once, and the start-end vertex does not appear elsewhere in the circuit; however,

 is not considered a simple circuit.

If for every two vertices u and v there exists a path whose start vertex is u and whose end vertex is v then the graph is called connected.

A digraph (or directed graph) is defined similarly to a graph except that the pair of endpoints of an edge is now ordered; the first endpoint is called the start-vertex of the edge and the second (which may be the same) is called its end-vertex. The edge (

) e is said to be directed from u to v. Edges with the same start vertex and the same end vertex are called parallel, and if u (v,

 and

 then e1 and e2 are antiparallel. An edge u (u is called a self-loop.

The outdegree, dout(v), of a vertex v is the number of edges which have v as their start-vertex; indegree, din(v), is defined similarly. Clearly, for every graph

A directed path is a sequence of edges e1, e2, ... such that the end vertex of ei-1 is the start vertex of ei. A directed path is a directed circuit if the start vertex of the path is the same as its end vertex. The notion of a directed path or circuit being simple is defined similarly to that in the undirected case. A digraph is said to be strongly connected if for every vertex u and every vertex v there is a directed path from u to v; namely, its start-vertex is u and its end-vertex is v.

1.2 COMPUTER REPRESENTATION OF GRAPHS

In order to understand the time and space complexities of graph algorithms one needs to know how graphs are represented in the computer memory. In this section two of the most common methods of graph representation are briefly described.

Graphs and digraphs which have no parallel edges are called simple. In cases of simple graphs, the specification of the two endpoints is sufficient to specify the edge; in cases of digraph the specification of the start-vertex and end-vertex is sufficient. Thus, we can represent a graph or digraph of n vertices by an n (n matrix C, where Cij= 1 if there is an edge connecting vertex vi to vj and Cij= 0, if not. Clearly, in the case of graphs Cij= 1 implies Ci = 1; or in other words, C is symmetric. But in the case of digraphs, any n (n matrix of zeros and ones is possible. This matrix is called the adjacency matrix.

Given the adjacency matrix of a graph, one can compute d(vi) by counting the number of ones in the ith row, except that a one on the main diagonal contributes two to the count. For a digraph, the number of ones in the i row is equal to dout(vi) and the number of ones in the i column is equal to din(vi).

The adjacency matrix is not an efficient representation of the graph in case the graph is sparse; namely, the number of edges is significantly smaller than n2. In these cases the following representation, which also allows parallel edges, is preferred.

For each of the vertices, the edges incident to it are listed. This incidence list may simply be an array or may be a linked list. We may need a table which tells us the location of the list for each vertex and a table which tells us for each edge its two endpoints (or start-vertex and end-vertex, in case of a digraph).

We can now trace a path starting from a vertex, by taking the first edge on its incidence list, look up its other endpoint in the edge table, finding the incidence list of this new vertex etc. This saves the time of scanning the row of the matrix, looking for a one. However, the saving is real only if n is large and the graph is sparse, for instead of using one bit per edge, we now use edge names and auxiliary pointers necessary in our data structure. Clearly, the space required is O(|E| + |V|), i.e., bounded by a constant times |E| + |V|. Here we assume that the basic word length of our computer is large enough to encode all edges and vertices. If this assumption is false then the space required is O((|E| + |V|) log (|E| + |V|))(.

In practice, most graphs are sparse. Namely, the ratio (|E| + |V|)/|V|2 tends to zero as the size of the graphs increases. Therefore, we shall prefer the use of incidence lists to that of adjacency matrices.

The reader can find more about data structures and their uses in graph theoretic algorithms in references 1 and 2.

1.3 EULER GRAPHS

An Euler path of a finite undirected graph G(V, E) is a path e1, e2,..., el such that every edge appears on it exactly once; thus, l = |E|. An undirected graph which has an Euler path is called an Euler graph.

Theorem 1.1: A finite (undirected) connected graph is an Euler graph if and only if exactly two vertices are of odd degree or all vertices are of even degree. In the latter case, every Euler path of the graph is a circuit, and in the former case, none is.

As an immediate conclusion of Theorem 1.1 we observe that none of the graphs in Figure 1.3 is an Euler graph, because both have four vertices of odd degree. The graph shown in Figure 1.3(a) is the famous K(nigsberg bridge problem solved by Euler in 1736. The graph shown in Figure 1.3(b) is a common misleading puzzle of the type “draw without lifting your pen from the paper”.

Proof: It is clear that if a graph has an Euler path which is not a circuit, then the start vertex and the end vertex of the path are of odd degree, while all the other vertices are of even degree. Also, if a graph has an Euler circuit, then all vertices are of even degree.

[image: image3.png]Figure 1.2

Assume now that G is a finite graph with exactly two vertices of odd degree, a and b. We shall described now an algorithm for finding an Euler path from a to b. Starting from a we choose any edge adjacent to it (an edge of which a is an endpoint) and trace it (go to its other endpoint). Upon entering a vertex we search for an unused incident edge. If the vertex is neither a nor b, each time we pass through it we use up two of its incident edges. The degree of the vertex is even. Thus, the number of unused incident edges after leaving it is even. (Here again, a self-loop is counted twice.) Therefore, upon entering it there is at least one unused incident edge to leave by. Also, by a similar argument, whenever we reenter a we have an unused edge to leave by. It follows that the only place this process can stop is in b. So far we have found a path which starts in a, ends in b, and the number of unused edges incident to any vertex is even. Since the graph is connected, there must be at least one unused edge which is incident to one of the vertices on the existing path from a to b. Starting a trail from this vertex on unused edges, the only vertex in which this process can end (because no continuation can be found) is the vertex in which it started. Thus, we have found a circuit of edges which were not used before, and in which each edge is used at most once: it starts and ends in a vertex visited in the previous path. It is easy to change our path from a to b to include this detour. We continue to add such detours to our path as long as not all edges are in it.

The case of all vertices of even degrees is similar. The only difference is that we start the initial tour at any vertex, and this tour must stop at the same vertex. This initial circuit is amended as before, until all edges are included.

Q.e.d.

In the case of digraphs, a directed Euler path is a directed path in which every edge appears exactly once. A directed Euler circuit is defined similarly. Also a digraph is called Euler if it has a directed Euler path (or circuit).

The underlying (undirected) graph of a digraph is the graph resulting from the digraph if the direction of the edges is ignored. Thus, the underlying graph of the digraph shown in Figure 1.4(a) is shown in Figure 1.4(b).

Theorem 1.2: A finite digraph is an Euler digraph if any only if its underlying graph is connected and one of the following two conditions holds:

1. There is one vertex a such that dout(a) = din(a) + 1 and another vertex b such that

 dout(b) + 1 = din(b), while for all other vertices v, dout(v) = din(v).

2. For all vertices v, dout(v) = din(v).

If 1 holds then every directed Euler path starts in a and ends in b. If 2 holds then every directed Euler path is a directed Euler circuit.

[image: image4.png](a)

Figure 1.3

(b)

The proof of the theorem is along the same lines as the proof of Theorem 1.1, and will not be repeated here.

Let us make now a few comments about the complexity of the algorithm for finding an Euler path, as described in the proof of Theorem 1.1. Our purpose is to show that the time complexity of the algorithm is 0(|E|); namely, there exists a constant K such that the time it takes to find an Euler path is bounded by K (|E|.

In the implementation, we use the following data structures:

1. Incidence lists which describe the graph.

2. A doubly-linked list of edges P describing the path. Initially this list is empty.

3. A vertex table, specifying for each vertex v the following data:

(a) A mark which tells whether v appears already on the path. Initially all vertices are marked "unvisited".

(b) A pointer N(v), to the next edge on the incidence list, which is the first not to have been traced from v before. Initially N(v) points to the first edge on v’s incidence list.

(c) A pointer E(v) to an edge on the path which has been traced from v. Initially E(v) is “undefined”.

4. An edge table which specified for each edge its two endpoints and whether it has been used. Initially, all edges are marked "unused".

5. A list L of vertices all of which have been visited. Each vertex enters this list at most once.

First let us describe a subroutine TRACE(d, P), where d is a vertex and P is a doubly linked list, initially empty, for storage of a traced path. The tracing starts in d and ends when the path, stored in P, cannot be extended.

TRACE(d, P):

(1) v (d

(2) If v is “unvisited”, put it in L and mark it “visited”.

(3) If N(v) is "used” but is not last on v's incidence list then have N(v) point to the next edge and repeat (3).

(4) If N(v) is "used” and it is the last edge on v's incidence list then stop.

(5) e (N(v)

(6) Add e to the end of P.

(7) If E(v) is “undefined" then E(v) is made to point to the occurrence of e in P.

(8) Mark e “used”.

(9) Use the edge table to find the other endpoint u of e.

(10) v (u and go to (2).

The algorithm is now as follows:

(1) d (a

(2) TRACE(d, P). [Comment: The subroutine finds a path from a to b.]

(3) If L is empty, stop.

(4) Let u be in L. Remove u from L.

(5) Start a new doubly linked list of edges, P ', which is initially empty. [Comment: P ' is to contain the detour from u.]

(6) TRACE(u, P')

(7) Incorporate P' into P at E(u). [Comment: This joins the path and the detour into one, possibly longer path. (The detour may be empty.) Since the edge E(u) starts from u, the detour is incorporated in a correct place.]

(8) Go to (3).

It is not hard to see that both the time and space complexity of this algorithm is O(|E|).

1.4 DE BRUIJN SEQUENCES

Let E = {0, 1, ..., (– 1} be an alphabet of e letters. Clearly there are (n different words of length n over (. A de Bruijn sequence(is a (circular) sequence a0a1 . . . al-1 over (such that for every word w of length n over (there exists a unique i such that

aiai+1 . . . ai+n-1 = w,
where the computation of the indices is modulo L. Clearly if the sequence satisfies this condition, then L = (n. The most important case is that of (= 2.

Binary de Bruijn sequences are of great importance in coding theory and are implemented by shift registers. (See Golomb’s book [3] on the subject.) The interested reader can find more information on de Bruijn sequences in references 4 and 5. The only problem we shall discuss here is the existence of de Bruijn sequences for every ((2 and every n.

Let us describe a digraph G(,n(V, E) which has the following structure:

1. V is the set of all (n-1 words of length n – 1 over (.

2. E is the set of all (n words of length n over (.

3. The edge b1b2 … bn, starts at vertex b1b2 … bn-1 and ends at vertex b2b3 … bn.

The graphs G2,3, G2,4, and G3,2 are shown in Figures 1.5, 1.6 and 1.7 respectively.

These graphs are sometimes called de Bruijn diagrams, or Good’s diagrams, or shift register state diagrams. The structure of the graphs is such that the word w2 can follow the word w1 in a de Bruijn sequence only if the edge w2 starts at the vertex in which w1 ends. Also it is clear that if we find a directed Euler circuit (a directed circuit which uses each of the graph’s edges exactly once) of G(,n,then we also have a de Bruijn sequence. For example, consider the directed Euler circuit of G2,3 (Figure 1.5) consisting of the following sequence of edges:

000, 001, 011, 111, 110, 101, 010, 100.

The implied de Bruijn sequence, 00011101, follows by reading the first letter of each word in the circuit. Thus, the question of existence of de Bruijn sequences is equivalent to that of the existence of directed Euler circuits in the corresponding de Bruijn diagram.

Theorem 1.3: For every positive integers (and n, G(,n has a directed Euler circuit.

Proof: We wish to use Theorem 1.2 to prove our theorem. First we have to show that the underlying undirected graph is connected. In fact, we shall show that G(,n is strongly connected. Let b1b2 … bn-1 and c1c2 … cn-1 be any two vertices; the directed path b1b2 … bn-1c1, b2b3 … bn-1c1c2, …, bn-1c1c2 … cn-1 leads from the first to the second. Next, we have to show that dout(v) = din(v) for each vertex v. The vertex b1b2 … bn-1 is entered by

[image: image5.png](@ (b)
Figure 1.4

edges cb1b2 … bn-1, where c can be chosen in (ways, and is the start vertex of edges b1b2 … bn-1c, where again c can be chosen in (ways.

Q.e.d.

Corollary 1.1: For every positive integers (and n there exists a de Bruijn sequence:

1.5 SHORTEST-PATH ALGORITHMS

In general the shortest-path problems are concerned with finding shortest paths between vertices. Many interesting problems arise, and the variety depends on the type of graph in our application and the exact question we want to answer. Some of the characteristics which may help in defining the exact problem are as follows:

1. The graph is finite or infinite.

2. The graph is undirected or directed.

3. The edges are all of length 1, or all lengths are non-negative, or negative lengths are allowed.

4. We may be interested in shortest paths from a given vertex to another, or from a given vertex to all the other vertices, or from each vertex to all the other vertices.

5. We may be interested in finding just one path, or all paths, or counting the number of shortest paths.

[image: image6.png]

Clearly, this section will deal only with very few of all the possible problems. An attempt is made to describe the most important techniques.

First let us consider the case of a finite graph G in which two vertices s and t are specified. Our task is to find a path from s to t, if there are any, which uses the least number of edges. Clearly this is the case of the finite, undirected graph, with all length of edges being equal to 1, and where all we want is one path from a given vertex to another. In fact, the digraph case is just as easy and can be similarly solved.

The algorithm to be used here was suggested by Moore [6] and by now is widely used. It is well known as the Breadth First Search (BFS) technique.

At first no vertices of the graph are considered labeled.

1. Label vertex s with 0.

2. i (0

3. Find all unlabeled vertices adjacent to at least one vertex labeled i. If none are found, stop.

4. Label all the vertices found in (3) with i + 1.

5. If vertex t is labeled, stop.

6. i (i + 1 and go to (3).

Clearly we can remove step 5 from the algorithm, and the algorithm is still valid for finite graphs. However, step 5 saves the work which would be wasted after t is labeled, and it permits the use of the algorithm on infinite graphs whose vertices are of finite degree and in which there is a (finite) path between s and t.

Let the distance between u and v be the least number of edges in a path connecting u and v, if such a path exists, and (if none exists.

Theorem 1.3: The BFS algorithm computes the distance of each vertex from s, if t is not closer.

Proof: Let us denote the label of a vertex v, assigned by the BFS algorithm, by ((v).

First we show that if a vertex is labeled ((v) = k, then there is a path of length k from s to v. Such a path can be traced as follows: There must be a vertex vk-1 adjacent to v = vk, labeled k – 1, and similarly, there must be a vertex vk-i-1 adjacent to vk-1 labeled k – i – 1 for i = 0, 1, ..., k – 1. Clearly v0 = s, since s is the only vertex labeled 0. Thus, vo – v1 – …vk-1 – vk is a path of length k from s to v.

Now, let us prove by induction on l that if v is of distance l from s and if t is not closer to s, then ((v) = l.

After Step 1, ((s) = 0, and indeed the distance from s to s is zero.

Assume now that the statement holds for shorter distances, let us show that it must hold for l too. Let s – v1 – v2 – … vl-1 – v be a shortest path from s to v. Clearly, s – v1 – v2 ...vl-2 – vl-1 is a shortest path from s to yl-1 If t is not closer to s than v then clearly it is not closer than vl-1 either. By the inductive hypothesis ((vl-1) = l – 1. When i = l – 1, v receives the label l. It could not have been labeled before since if it were then its label is less than l, and there is a shorter path from s to v, in contradiction to l’s definition.

Q.e.d.

It is clear that each edge is traced at most twice, in this algorithm; once from each of its endpoints. That is, for each i the vertices labeled i are scanned for their incident edges in step 3. Thus, if we use the incidence lists data structures the algorithm will be of time complexity O(|E|).

The directed case is even simpler because each edge is traced at most once.

A path from s to t can be traced by moving now from t to s, as described in the proof of Theorem 1.3. If we leave for each vertex the name of the edge used for labeling it, the tracing is even easier.

Let us now consider the case of a finite digraph, whose edges are assigned with nonnegative lengths; thus, each edge e is assigned a length l(e) (0. Also, there are two vertices s and t and we want to find a shortest directed path from s to t, where the length of a path is the sum of the lengths of its edges.

The following algorithm is due to Dijkstra [7]:

1. ((s) (0 and for all v (s, ((v) ((.

2. T (V.

3. Let u be a vertex in T for which ((u) is minimum.

4. If u = t, stop.

5. For every edge

, if v(T and ((v) (((u) + l(e) then ((v) (((u) + l(e).

6. T – T – { u } and go to step 3.
Let us denote the distance of vertex v from s by ((v). We want to show that upon termination ((t) = ((t); that is, if ((t) is finite thin it is equal to ((t) and if ((t) is infinite then there is no path from s to t in the digraph.
Lemma 1.2: In Dijkstra's algorithm, if ((v) is finite then there is a path from s to v whose length is ((v).
Proof: Let u be the vertex which gave v its present label ((v); namely, ((u) + l(e) = ((v), where

. After this assignment took place, u did not change its label, since in the following step (step 6) u was removed from the set T (of temporarily assigned vertices) and its label remained fixed from there on. Next, find the vertex which gave u its final label ((u), and repeating this backward search, we trace a path from s to v whose length is exactly ((v). The backward search finds each time a vertex which has left T earlier, and therefore no vertex on this path can be repeated; it can only terminate in s which has been assigned its label in step 1.

Q.e.d.

Lemma 1.3: In Dijkstra’s algorithm, when a vertex is chosen (in Step 3), its label ((u) satisfies ((u) = ((u).

Proof: By induction on the order in which vertices leave the set T. The first one to leave is s, and indeed ((s) = ((s) = 0.

Assume now that the statement holds for all vertices which left T before u.

If ((u) = (, let u' be the first vertex whose label ((u') is infinite when it is chosen. Clearly, for every v in T, at this point, ((v) = (, and for all vertices v'(V – T, ((v') is finite. Therefore, there is no edge with a start-vertex in V – T and end-vertex in T. It follows that there is no path from s (which is in V – T) to u (which is in T).

If ((u) is finite, then by Lemma 1.2, ((u) is the length of some path from s to u. Thus, ((u) (((u). We have to show that ((u) > ((u) is impossible. Let a shortest path from s to u be

.Thus, for every i = 0, 1, ..., k

.

Let vi be the right most vertex on this path to leave T before u. By the inductive hypothesis

 EMBED Equation.2
.

If vi+1 (u, then ((vi+1) (((vi) + l(ei+1) after vi has left T. Since labels can only decrease if they change at all, when u is chosen ((vi+1) still satisfies this inequality. We have:

((vi+1) (((vi) + l(ei+1) = ((vi) + l(ei+1) = ((vi+1) (((u),
and if ((u) < ((u), u should not have been chosen. In case vi+1 = u, the same argument shows directly that ((u) (((u).

Q.e.d.

It is an immediate corollary of Lemma 1.3 that ((t) = ((t) upon termination.

Let us now consider the complexity of Dijkstra’s algorithm. In step 3, the minimum label of the elements of T has to be found. Clearly this can be done in |T| – 1 comparisons. At first T = V; it decreases by one each time and the search is repeated |V| times. Thus, the total time spent on step 3 is O(|V|2). Step 5 can use each edge exactly once. Thus it uses, at most, O(|E|) time. Since it makes no sense to have parallel edges (for all but the shortest can be dropped) or self-loops, |E| (|V| ((|V| – 1). Thus, the whole algorithm is of O(|V|2) complexity.

Clearly, for sparse graphs the BFS algorithm is better; unfortunately it does not work if not all edge lengths are equal.

Dijkstra’s algorithm is applicable to undirected graphs too. Simply represent each edge of the graph by two anti-parallel directed edges with the same length. Also, it can be used on infinite graphs, if outgoing degrees are finite and there is a finite directed path from s to t. However, this algorithm is not applicable if l(e) may be negative; Lemma 1.2 still holds, but Lemma 1.3 does not.

Next, an algorithm for finding the distance of all the vertices of a finite digraph from a given vertex s, is described. It allows negative edge lengths, but does not allow a directed circuit whose length (sum of the lengths of its edges) is negative. The algorithm is due to Ford [8, 9]:

1. ((s) (0 and for every v (s, ((v) ((.

2. As long as there is an edge

 such that ((v) > ((u) + l(e) replace ((v) by ((u) + l(e).

For our purposes (is not greater than (+ k, even if k is negative.

It is not even obvious that the algorithm will terminate; indeed, it will not if there is a directed circuit accessible from s (namely, there is a directed path from s to one of the vertices on the circuit) whose length is negative. By going around this circuit the labels will be decreased and the process can be repeated indefinitely.

Lemma 1.4: In the Ford algorithm, if ((v) is finite then there is a directed path from s to v whose length is ((v).
Proof: As in the proof of the similar previous statements, this is proved by displaying a path from s to v, and its construction is backwards, from v to s. First we find the vertex u which gave v its present label ((v). The value of ((u) may have decreased since, but we shall refer to its value ('(u) at the time that it gave v its label. Thus, ((v) = (’(u) + l(e), where

. We continue from u to the vertex which gave it the value (’(u) etc., each time referring to an earlier time in the running of the algorithm. Therefore, this process must end, and the only place it can end is in s.

Q.e.d.

The lemma above is even true if there are negative length directed circuits. But if there are no such circuits, the path traced in the proof cannot return to a vertex visited earlier. For if it does, then by going around the directed circuit, a vertex improved its own label; this implies that the sum of the edge lengths of the circuit is negative. Therefore we have:

Lemma 1.5: In the Ford algorithm, if the digraph has no directed circuits of negative length and if ((v) is finite then there is a simple directed path from s to v whose length is ((v).

Since each value, ((v), corresponds to at least one simple path from s to v, and since the number of simple directed paths in a finite digraph is finite, the number of values possible for ((v) is finite. Thus, the Ford algorithm must terminate.

Lemma 1.6: For a digraph with no negative directed circuit, upon termination of the Ford algorithm, ((v) = ((v) for every vertex v.

Proof: By Lemma 1.5, ((v) (((v). If ((v) > ((v), let

be a shortest path from s to v. Clearly, for every i = 0, 1, ...,k

Let vi be the first vertex on this path for which ((vi) > ((vi). Since ((vi-1) = ((vi-1), the edge

 can be used to lower ((vi) to ((vi-1) + l(ei), (which is equal to ((vi)). Thus, the algorithm should not have terminated.

Q.e.d.

We can use a simple device to bound the number of operation to O(|E| (|V|). Order the edges: e1, e2, ..., e|E|. Now, perform step 2 by first checking e1, then e2, etc., and improving labels accordingly. After the first such sweep, go through additional sweeps, until an entire sweep produces no improvement. If the digraph contains no negative directed circuits then the process will terminate. Furthermore, if a shortest path from s to v consists of k edges, then by the end of the kth sweep v will have its final label; this is easily proved by induction on k. Since k is bounded by |V|, the whole algorithm takes at most O(|E| (|V|) steps. Moreover, if by the |V| th sweep any improvement of a label takes place then the digraph must contain a negative circuit. Thus, we can use the Ford algorithm to detect the existance of a negative circuit, if all vertices are accessible from s. If the existence of a negative circuit is indicated, we can find one by starting a backward search from a vertex whose label is improved in the |V| th sweep. To this end we need for each vertex v a pointer to the vertex u which gave v its last label. This is easily achieved by a simple addition to step 2.

The Ford algorithm cannot be used on undirected graphs because any negative edge has the effect of a negative circuit; one can go on it back and forth decreasing labels indefinitely. All three algorithms can be used to find the distances of all vertices from a given vertex s; the BFS and Dijkstra’s algorithm have to be changed: instead of stoping when t is labeled or taken out of T, stop when all accessible vertices are labeled or when T is empty. The bounds on the number of operations remain O(|E|), 0(|V|2) and O(|E| (|V|) respectively for the BFS, Dijkstra and the Ford algorithm. If this is repeated from all vertices, in order to find the distance from every vertex to all the others, the respective complexities are O(|E| (|V|), O(|V|3) and O(|E| (|V|2). Next, let us describe an algorithm which solves the case with negative lengths in time O(|V|3).

Let G(V, E) be a finite digraph with V = {1, 2, ..., n}. The length of edge e is denoted by l(e), as before, and it may be negative. Define

Let (k(i, j) be the length of a shortest path from i to j among all paths which may pass through vertices 1, 2, ..., k but do not pass through vertices k + 1,k+2, ...,n.

Floyd’s algorithm [10] is as follows:

1. k (1

2. For every 1 (i, j (n compute

(k(i, j) (Min{(k-1(i, j), (k-1(i, k) + (k-1(k, j)}.

3. If k = n, stop. If not, increment k and go to step 2.

The algorithm clearly yields the right answer; namely, (n(i, j) is the distance from i to j. The answer is only meaningful if there are no negative circuits in G. The existence of negative circuits is easily detected by (k(i, i) < 0. Each application of step 2 requires n2 operations, and step 2 is repeated n times. Thus, the algorithm is of complexity O(n3).

For the case of finite graphs with non-negative edge lengths, both the repeated Dijkstra algorithm and Floyd’s take O(|V|3). Additional information on the shortest path problem can be found in Problems 1.9 and 1.10 and references 11 and 12.

PROBLEMS

1.1 Prove that if a connected (undirected) finite graph has exactly 2k vertices of odd degree then the set of edges can be partitioned into k paths such that every edge is used exactly once. Is the condition of connec-tivity necessary or can it be replaced by a weaker condition?

A Hamilton path (circuit) is a simple path (circuit) on which every vertex of the graph appears exactly once.

1.2 Prove that the following graph has no Hamilton path or circuit.

[image: image7.png]

1.3 Prove that in every completely connected directed graph (a graph in which every two vertices are connected by exactly one directed edge in one of the two possible directions) there is always a directed Hamilton path. (Hint: Prove by induction on the number of vertices.)

1.4 Prove that a directed Hamilton circuit of G(,ncorresponds to a directed Euler circuit of G(,n-1. Is it true that G(,n always has a direct Hamilton circuit?

1.5 In the following assume that G(V, E) is a finite undirected graph, with no parallel edges and no self-loops.

(a) Describe an algorithm which attempts to find a Hamilton circuit in G by working with a partial simple path. If the path cannot be ex tended in either direction then try to close it into a simple circuit by the edge between its endpoints, if it exists, or by a switch, as suggested by the diagram, where edges a and b are added and c is deleted. Once a circuit is formed, look for an edge from one of its vertices to a new vertex, and open the circuit to a now longer path, etc.

[image: image8.png]

(b) Prove that if for every two vertices u and v, d(u) + d(v) (n, where n = |V|, then the algorithm will never fail to produce a Hamilton circuit.

(c) Deduce Dirac’s theorem [13]: If for every vertex v, d(v) (n/2, then G has a Hamilton circuit.

1.6 Describe an algorithm for finding the number of shortest paths from s to t after the BFS algorithm has been performed.

1.7 Repeat the above, after the Dijkstra algorithm has been performed. Assume l(e) > 0 for every edge e. Why is this asumption necessary?

1.8 Prove that a connected undirected graph G is orientable (by giving each edge some direction) into a strongly connected digraph if and only if each edge of G is in some simple circuit in G. (A path

 is not considered a simple circuit.)

1.9 The transitive closure of a digraph G(V, E) is a digraph G' (V, E) such that there is an edge

 in G' if and only if there is a (non-empty) directed path from u to v in G. For the BFS, Dijkstra and Floyd's algorithms, explain how they can be used to construct G' for a given G, and compare the complexities of the resulting algorithms.

1.10 The following algorithm, due to Dantzig [14], finds all distances in a finite digraph, like Floyd’s algorithm. Let (k(i, j) be the distance from i to j, where 1 (i, j (k and no vertices higher than k are used on the path. Let (k(i, i) = 0 for all i and k. Also, let l(i, j) be l(e) if

, and (if no such edge exists.

(1) (1(1, 1) (Min {0, l(1, 1)}.

(2) k (2

(3) For 1 (i < k do

(k(i, k) (Min1(j<k{(k-1(i, j) + l(j, k)}
(k(i, k) (Min1(j<k{l(k, j) + (k-1(i, j)}
(4) For 1 (i, j < k do

(k(i, k) (Min{(k-1(i, j), (k (i, k) + (k (k, j)}
(5) If k = n, stop, If not, increment k and go to step 3.

Show that Dantzig’s algorithm is valid. How are negative circuits detected? What is the time complexity of this algorithm?

REFERENCES

[1] Knuth, D. E., The Art of Computer Programming, Vol. I: Fundamental Algorithms, Addison-Wesley, 1968.

[2] Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.

[3] Golomb, S. W., Shift Register Sequences, Holden-Day, 1967.

[4] Berge, C., The Theory of Graphs and Its Applications, Wiley, 1962, Chapter 17.

[5] Hall, M., Jr., Combinatorial Theory, Blaisdell, 1967, Chapter 9.

[6] Moore, E. F., "The Shortest Path Through a Maze”, Proc. Iternat. Symp. Switching Th., 1957, Part II, Harvard Univ. Press, 1959, pp. 285-292.

[7] Dijkstra, E. W., "A Note on Two Problems in Connexion with Graphs", Numerische Math., Vol. 1, 1959, pp. 269-271.

[8] Ford, L. R., Jr.', "Network Flow Theory", The Rand Corp., P-923, August, 1956.

[9] Ford, L. R., Jr. and Fulkerson, D. R., Flows in Networks, Princeton Univ. Press, 1962, Chap. III, Sec. 5.

[10] Floyd, R. W., "Algorithm 97: Shortest Path", Comm. ACM, Vol. 5, 1962, p. 345.

[11] Dreyfus, S. E., "An Appraisal of Some Shortest-Path Algorithms”, Operations Research, Vol. 17, 1969, pp. 395-412.

[12] Lawler, E. L., Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, 1976, Chapter 3.

[13] Dirac, G. A., "Connectivity Theorems for Graphs", Quart. L Math., Ser. (2), Vol. 3, 1952, pp. 171-174.

[14] Dantzig, G. B., “All Shortest Routes in a Graph”, Oper. Res. House, Stanford Univ. Tech. Rep. 66-3, November 1966.

(The base of the log is unimportant (clearly greater than one), since this estimate is

only up to a constant multiplier.

(Sometimes they are called maximum-length shift register sequences.

- 14 -
- 15 -

_953212924.unknown

_953213590.unknown

_953214386.unknown

_953214558.unknown

_953215689.unknown

_953215728.unknown

_953215863.unknown

_953214923.unknown

_953214475.unknown

_953214081.unknown

_953214266.unknown

_953213627.unknown

_953213436.unknown

_953213530.unknown

_953213132.unknown

_953156929.unknown

_953157038.unknown

_953157141.unknown

_953157014.unknown

_953156478.unknown

_953156870.unknown

_953155411.unknown

