Oleg Merkulov

CIS 26 Prof. Kopec

PL/1 programming language

History: PL/I is a third-generation (3GL) programming language developed in the early 1960s as an alternative to assembler language (for low-level computer processing functions), COBOL (for large-scale business applications), FORTRAN and ALGOL 60 (for scientific and algorithmic applications). PL/I stands for "Programming Language 1". PL/I is still in use today on IBM mainframes MVS operating system.

Abstraction: In terms of data abstraction PL/I lacks the support of data structures built-in to the language. However, due to extensive functionality of arrays, structures, unions and pointers any abstract data types could be implemented quickly and efficiently. Process abstraction can be easily achieved by using both iterative and recursive procedures.

Binding: The language fully supports the concept of early and late binding by using storage class attributes like AUTOMATIC, STATIC, and CONTROLLED.3)
Clarity of code: Perhaps the most describing statement given to the language was made by famous computer scientist E.Dijkstra: “Using PL/I must be like flying a plane with 7000 buttons, switches, and handles to manipulate in the cockpit…And if I have to describe the influence PL/I can have on its users, the closest metaphor that comes to my mind is that of a drug.”4) The number of different techniques used in PL/I to express the language structures is truly confusing, especially considering the ability to declare implicit variables, and to use keywords as the names of variables.

Conditionals: PL/I supports a standard set of IF…ILSE structure, SELECT…WHEN (same as switch statement in C) and conditional operators. The whole set of comparison operators that can be used in compounded conditional statements as (X<0)*A + (0<=X & X<=100)*B + (100<X)*C.2) GOTO statement was used extensively in PL/I, however the block structure of the language easily allows writing the code without it.
Functions: PL/I provides almost 200 built-in functions, pseudovariables, and subroutines that manipulate scalar and aggregate data.1) These functions cover: character, bit, and graphic string manipulation; arithmetic computation; mathematical computation; floating point inquiries and manipulation; integer manipulation; precision handling; array manipulation; storage control; condition handling; I/O; Date/Time manipulation.
Input/Output: PL/I programs have the capability to process various sizes and type of records, access various devices, edit and validate various kinds of input and output data, and easily produce report files. Two types of I/O are provided:

· Record-oriented input/output deals with aggregates of data, called records, and logically transmits one record at a time without performing any data conversions. Such files may be indexed, relative, or consecutive.

· Stream I/O deals with a logically continuous stream of characters (that may physically reside externally as records) and logically transmits a data item at a time performing conversions between the internal form and the external form. The data items may be transmitted as a list, edited list, an annotated list, or a combination of these.1)

Integer Representation: PL/I defines its data types very precisely without regard for any hardware. For example, an integer type is defined as having a mode of REAL or COMPLEX, base of BINARY or DECIMAL, along with the precision that a programmer requires. Therefore, FIXED BINARY(12) declares a binary integer of 12 data bits, whereas FIXED DECIMAL(3) declares a decimal integer of 3 decimal digits. The implementers deliver even if the machine has no support for such data type or precision.1)

 Libraries: The language does not support the concept of libraries. However, it provides more than 200 built-in functions for arithmetic and binary manipulation, so that a programmer can directly start using the provided tools without worrying about finding a necessary library.

 Object Oriented: Due to its age, PL/I does not use the concept of objects.

 Orthogonality: The language supports some degree of orthagonality by using a complex set of operators that have special meaning depending on the context and type of operation. For example, in such statement as X = A = B; the first equal symbol is the assignment symbol, while the second equal symbol is the comparison operator. Also, in the expression A*-B, the minus sign indicates that the value of A is multiplied by -1 times the value of B.2) In general, due to the complexity of language constructs (and various restrictions associated with them) PL/I is not an example of highly orthogonal language.
Pointers: Pointer variables are represented by POINTER and OFFSET types. The former specifies any memory location available to the program, while OFFSET variables identify the location relative to the start of the area.3) PL/I supports operations with pointers using such statements as ALLOCATE, LOCATE, READ, or FETCH.

Powerful: PL/I is a very powerful language even by today’s standards. With full support for pointers to all data types (including pointers to structures), recursion, dynamic memory allocation, co-processing, extensive built-in functions, exception handling, multi-tasking and many other facilities, PL/I was indeed quite a leap forward compared to the programming languages of its time. The language managed to combine the features of both COBOL and FORTRAN so that at some point it was commonly called “bigger COBOL” and “bigger FORTRAN”.5) Another factor of appreciation is that PL/I heavily influenced the development of C programming language.

Procedures: A procedure in PL/I is a sequence of statements delimited by a PROCEDURE statement and a corresponding END statement. A procedure can be a main procedure, a subroutine, or a function. An application must have exactly one external procedure that has OPTIONS(MAIN). A procedure block nested within another procedure or begin-block is called an internal procedure. The opposite is called an external procedure.

EXAMPLE
PROCEDURE;

DECLARE (A,B) FIXED (6), (INFILE INPUT, OUTFILE OUTPUT) FILE;

ON ENDFILE (INFILE) GO TO PRINT;

I = 0;

LOOP:

GET FILE (INFILE) LIST(A,B);

C = A*B;

I = I + 1;

PUT FILE (OUTFILE) LIST (C);

GO TO LOOP;

PUT FILE (OUTFILE) LIST (C);

GO TO LOOP;

PRINT:
PUT FILE (OUTFILE) LIST (I);

CALL NEXT;

END; 7)
Recursion: The language supports recursion. A procedure that is invoked recursively must have the RECURSIVE attribute specified in the PROCEDURE statement.
Simple Syntax: The syntax of PL/I suffers in terms of simplicity mainly due to the

· Excessive number of qualified keywords (which can also be used as variables’ names),

· Complicated scoping rules for variables, pointers and subroutines,

· Implicit variable declarations,

· Case-insensitivity.

Strongly Typed: PL/I is not a strongly type language mainly because it allows for implicit variable declaration. Also, one of the features of PL/I is the ability to specify the precision of integer and floating types, which may cause havoc if a programmer doesn’t check the size of variable before assigning the value of computation.

Structured: PL/I is a perfect example of structured (imperative) language, consisting of packages, procedures, begin-blocks, statements, expressions, and built-in functions. In general, the main structural elements of PL/I are packages, procedures and begin-blocks.

SELECT ... WHEN ... OTHERWISE permit sophisticated case logic.

Type of Computing: PL/I was originally designed to be equally effective with large-scale business applications, low-level computer processing functions, and scientific and algorithmic applications. And the language indeed enjoyed significant use in both business and scientific applications in the 1970s.6)

References

1. IBM PL/I support web page, http://www-306.ibm.com/software/awdtools/pli/about.htm
2. IBM Language Reference Version 3 Release 3.0, 5th ed, October 2003

3. IBM System 360 PL/I Language Specifications, March 1968, IBM, New York
4 .Dijkstra, E.(1972) “The Humble Programmer”: ACM Turing Lecture 1972, Communications of the ACM 15, 10, p.862

5 .Marco,L.(1996) “In praise of PL/I”, Enterprise Systems Journal, December, pp. 32-37.

6. Sebesta,R.(2003) “Concepts of programming languages” 6th ed, Addison-Wesley, p.73
7. IBM(1960) “A PL/I Primer Student Text”, IBM New York, p.34

Table

	Attributes
	PL/I

	Abstraction
	7

	Binding
	7

	Clarity of Code
	6

	Conditionals
	10

	Functions
	10

	Input/Output
	9

	Integer Representation
	8

	Libraries
	5

	Object Oriented
	N/A

	Orthogonality
	7

	Pointers
	5

	Powerful
	9

	Procedures
	7

	Recursion
	8

	Simple Syntax
	4

	Strongly Typed
	4

	Structured
	10

	Type of Computing
	Universal

