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Preface

This is the solution manual of the book “Queuing Theory and Telecommunications: Networks and Applications”, second edition. Exercises are given here for the various Chapters with a detailed solution, allowing the reader to understand the models and the approaches adopted. The purpose of this solution manual is to provide tools and examples for solving typical teletraffic engineering problems. This solution manual is an essential complement to the book and contains more than 80 solved exercises on the different topics.
Please note that the numbering of the exercises is the same as in the book, but Section numbering does not match Chapter numbering in the book. Figures are numbered independently of the book, but a mapping of the numbering is provided for those figures that are also in the book.

	SECTION 1

Exercises on Part I of the Book
	
	DIGITAL NETWORKS AND The INTERNET

	
	
	

	1. Exercises on Part I of the book
	


This Section contains some exercises on the first part of the book. The main interest is on traffic regulators, Dijkstra routing, deterministic queuing, and cwnd behavior of TCP.
Ex I.1 We have a Frame Relay network, which applies a policer to control the access of traffic sources. Let us consider a traffic source, which has a periodic ON-OFF bit-rate as a function of time as shown in Figure 1.1 (Figure 3.57 in the book), with parameters b (= burst bit-rate), T (= time length of the source cycle), and l (= xT, burst duration). The policer uses the following parameters: measurement interval, Tc, committed burst size, Bc, and excess burst size, Be. We make the following assumptions:
· Bc/Tc = Rc, a constant value,
· Be/Tc = Re, a constant value,
· bl/T = bx = Rs, mean source bit-rate,
· A rectangular pulse (burst) represents a single packet in Figure 1.1;
· The measurement interval Tc is applied to the periodic source according to the “phase” shown in Figure 1.1, so that the source cycle T contains an integer number of measurement intervals Tc (Tc = yT, with y = 1, 1/2, 1/3, etc.);
· Constraints: bx = Rs ≤ Rc (so that there is enough capacity to service the traffic source) and Tc ( xT ( y ( x (the measurement interval is larger than the burst duration).

It is requested to determine the conditions to have marking or dropping of all generated packets.
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Figure 1-1. Periodic traffic source (source cycle T) and measurement interval Tc (in this graph Tc ( T, y = 1).

Solution

The men bit-rate Rs = bx and the peak bit-rate is equal to b. Then, the burstiness  of the traffic source can be obtained as:
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Hence, parameter x directly controls the burstiness of the traffic source. For the sake of simplicity, we could consider x ( y, even if we have maintained the use of both symbols in the following derivations.

Note that bxT represents the burst size in bits and one burst, corresponding to one packet, is generated per cycle. The condition to have marking or dropping of all generated packets is:
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We can combine this result with the constraints Rs ≤ Rc and y ( x:
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The maximum of the burst duration l = xT that can be allowed without marking is constrained as follows:
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The condition to drop all generated packets is:
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The combined condition for packet dropping is:
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Summarizing the above considerations, we can conclude that under the condition x ≤ y (i.e., for a sufficiently high burstiness value  = 1/x), all packets are marked if yRc < Rs ≤ y(Rc + Re); moreover, all the packets are dropped if Rs > y(Rc + Re). Hence, marking or dropping depend on the Rs value: if Rs increases, we can have first packet marking and then packet dropping.

An equivalent approach could be carried out on the basis of the graph of the arrival curve of the traffic source, as shown in Figure 1.2.
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Figure 1 STYLEREF ChapterNo \* MERGEFORMAT -2. Arrival curve of the traffic source and measurement interval Tc; example with packet marking.

Ex I.2 Let us consider an ATM switch with a switching table, which manages virtual paths and virtual channels, as shown in Figure 1.3 (Figure 3.58 in the book). It is requested to determine the VPI and VCI fields to be used for an input cell if we like that this cell leaves the switch from output line A; in this case, we are also asked to provide the VPI and VCI fields of the corresponding output cell. 
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Figure 1-3. ATM switch and its switching table

Solution

On the basis of the switching table provided, an input cell must have VPI = 1 and VCI =1 to have that this cell leaves the switch from output line A. The corresponding output cell has VPI = 2 and VCI = 3.
Ex I.3 Let us consider the network depicted in Figure 1.4 (Figure 3.59 in the book): it is requested to determine the sink tree for node A by applying the Dijkstra shortest path routing algorithm.
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Figure 1-4. Network with bidirectional links, labeled by (a, c), where ‘‘a’’ denotes the link number and ‘‘c’’ represents the link cost.

Solution

We start the Dijkstra algorithm by labeling all nodes with an infinite cost. Then, we take node A as a reference and we label the nodes connected to A:
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	Between nodes B and F we select node B, which has the lowest cost. Then, we need to re-label the nodes connected to node B (i.e., node C).
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	Between nodes C and F we select node C, which has the lowest cost. Then, we need to re-label the nodes connected to node C (i.e., nodes D and E).
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	Among nodes D, E, and F we select node F, which has the lowest cost. Then, we need to re-label the nodes connected to node F. However, the label of node E does not change because the cost would increase. Moreover, the label of node D does not change because the cost of the path through F would not change.
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	Between nodes D and E, we select node D, which has the lowest cost. Then, we need to re-label the nodes connected to node D. However, the label of node E does not change because the path through D would entail a cost equal to 9, which is greater than 8, the current cost.
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	Hence, the sink tree of node A completes connecting E to node C.


Finally, the sink tree of node A can also be represented as follows:

	Destination Node:
	B
	C
	D
	E
	F

	Path from A:
	AB
	ABC
	ABCD
	ABCE
	AF

	Cost:
	2
	5
	7
	8
	6


The routing table of A can thus be expressed as:

	Destination Node:
	B
	C
	D
	E
	F

	Next Hop:
	B
	B
	B
	B
	F


Ex I.4 Let us consider an FTP data transfer (TCP ‘‘elephant’’ flow), referring to the network model depicted in Figure 1.5 (Figure 3.60 in the book). We adopt a scenario with IP packets (MTU) of 1500 bytes, Information Bit-Rate (IBR) of the bottleneck link equal to 600 kbit/s and physical Round-Trip Time (RTT) equal to 0.5 s (GEO satellite scenario). It is requested to determine the Bandwidth-Delay Product (BDP) and plot the behaviors of both the congestion window (cwnd) and the slow start threshold (ssthresh) up to 25 RTTs for both TCP Tahoe and TCP NewReno, under the following conditions: 

· Bottleneck link buffer capacity B = 20 pkts;
· Sockets buffers much larger than B + BDP;

· Initial ssthresh value equal to 32 pkts. 

Then, it is also requested to show the cwnd behaviors up to 25 RTTs for TCP Tahoe and TCP NewReno with initial ssthresh equal to 64 pkts: what are the differences with respect to the previous case ?


Finally, assuming to be able to change the size of the buffer of the bottleneck link, let us determine its optimal size from the TCP throughput standpoint.
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Figure 1-5. System model for the reliable transfer of data; case of an ‘‘elephant’’ TCP flow (FTP) of either Tahoe or Reno/NewReno type.
Solution

The BDP value for the data transfer is obtained as:
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In this study, we consider that the receiver window does not limit the connection throughput so that cwnd represents the actual traffic injection into the network. On the basis of the data provided in this exercise, the behaviors of cwnd and ssthresh are shown in Figure 1.6 for both TCP Tahoe (1988, FreeBSD 4.3 Tahoe) and TCP NewReno (2004, RFC 3782), where the traffic flows begin at 1 RTT. In both cases, there is first a slow start phase up to time 6 RTTs when the ssthresh value of 32 pkts is reached. In this case, even if the initial ssthresh is bigger than BDP [R1], we assume that there are no multiple packet losses at the bottleneck router because of the bursty injection of traffic of the slow start phase (we consider that there are multiple losses in the slow start phase only if the initial ssthresh is bigger than B + BDP; see the next case of this exercise. More details on these aspects are beyond the scope of this book). Then, there is a congestion avoidance phase up to time 19 RTTs when cwnd reaches the maximum value of B + BDP = 45 pkts. At the next RTT (i.e., time 20 RTTs), more packets are injected than the system can support (i.e., cwnd = 46 pkts > B + BDP) and there is a single packet loss. Up to this instant, the cwnd behaviors of both TCP versions are equal, but after this time the two TCP versions have different cwnd behaviors:

· TCP Tahoe: 3 Duplicate ACKs (DUPACKs) are received in about 1 RTT (we assume that these 3 DUPACKs arrive before an RTO expires) and TCP Tahoe performs a fast retransmission by resending the oldest unacknowledged packet and by setting ssthresh to half of the cwnd value (i.e., 23 pkts) and cwnd to 1 (with Tahoe, the reaction to 3 DUPACKs is the same as that after an RTO expiration). Then, TCP Tahoe performs a slow start phase with cwnd restarting from 1 pkt. When, cwnd reaches the new ssthresh value (i.e., 23 pkts) a congestion avoidance phase is performed up to the maximum cwnd value when a new loss causes the cwnd to have a new slow start phase. Then, cwnd has a periodic behavior.

· TCP NewReno: Also in this case the packet loss is revealed on the basis of 3 DUPACKs received (before RTO expires) and, then, ssthresh takes half of the cwnd value (i.e., 23 pkts) and cwnd is set equal to ssthresh. Then, TCP NewReno performs a congestion avoidance phase. From this time onwards, cwnd has a periodic behavior according to triangular waveform between B + BDP and (B + BDP)/2. Note that in this case TCP Reno would have the same cwnd behavior.


[image: image18]
Figure 1-6. Indicative cwnd behaviors for TCP Tahoe and TCP Reno/NewReno (initial ssthresh value = 32 pkts).
If the initial ssthresh value is 64 pkts, the initial slow start phase lasts for one more RTT with respect to the previous example, that is up to time 7 RTTs (corresponding to cwnd = 64 pkts). The initial injection of traffic according to the exponential increase of the slow start phase allows a sudden growth of cwnd well beyond cwndmax = B + BDP, because the traffic injection in this phase is too fast compared to the mechanisms used to detect packet losses. This is a typical problem of the TCP startup phase when the initial ssthresh value is greater than B+BDP. We thus consider that there are multiple packet losses (i.e., 64 45 = 19 pkts) that are recognized by 3 DUPACKs received soon after time 7 RTTs. Hence, from here onwards, the behaviors of the two TCP versions are different according to the intuitive description provided below (see the indicative cwnd behaviors in Figure 1.7):

· TCP Tahoe: The first 3 DUPACKs cause a fast retransmission going back to the oldest unacknowledged packet and using the slow start algorithm from cwnd = 1 with ssthresh = 32 pkts; we consider that such a mechanism allows us to recover all packet losses before an RTO expires. When cwnd reaches 32 pkts, a congestion avoidance phase begins and lasts up to cwnd = 45 pkts. Soon after, there is a packet loss, still recognized by means of 3 DUPACKs, so that cwnd restarts from 1 pkts and ssthresh is made equal to 23 pkts. From this time onwards, the cwnd behavior is periodic.
· TCP NewReno: When the first 3 DUPACKs are received, ssthresh is made equal to half of the cwnd value (i.e., 32 pkts) and cwnd is made equal to ssthresh. Although there have been multiple packet losses, TCP NewReno is able to perform a single Fast Retransmit - Fast Recovery (FR/FR) phase (use of partial ACKs), during which one lost packet is recovered per RTT. In the case of the ‘‘Slow-but-Steady’’ variant of TCP NewReno (defined in RFC 3782 and implemented in the FreeBSD TCP, a 4.4BSD-Lite-based operating system), where RTO is restarted after each partial ACK, there is no RTO expiration even in the presence of multiple losses in a window of data. In this phase, cwnd macroscopically maintains an almost flat behavior until all the losses have been recovered. 19 RTTs are needed to recover the packet losses. Instead, with the ‘‘Impatient’’ variant of TCP NewReno (the recommended version of TCP NewReno in RFC 3782), only the first partial ACK restarts the RTO, so that an RTO expiration can occur, depending on the RTT value and the number of packet losses:  assuming  that  RTO ( n×RTT  (with  n ( 2 in the GEO satellite case), an RTO expiration may occur n + 1 RTTs after the first 3 DUPACKs received, if there are at least n + 2 packet losses. After the RTO expiration, a slow start phase begins and the RTO value is doubled. Note that the macroscopic behavior of TCP Reno is in this case quite similar to that of TCP NewReno Impatient variant since an RTO may occur in the presence of multiple packet losses (we expect that Reno RTO may expire before NewReno Impatient RTO, even if Figure 1.7 does not take this aspect into account). Of course with a single packet loss (as in the first part of this exercise), ‘‘Impatient’’ variant and ‘‘Slow-but-Steady’’ variant provide the same results. Going back to the ‘‘Slow-but-Steady’’ version of TCP NewReno, when all the lost packets are received correctly, a congestion avoidance phase begins with cwnd increasing linearly up to the maximum possible of 45 pkts. Then, from the next RTT (i.e., time 40 RTTs) an excessive number of packets is injected into the network and a single packet loss occurs: ssthresh is made equal to half of the current cwnd value (i.e., 23 pkts) and cwnd is made equal to ssthresh.

[image: image19]
Figure 1-7. Indicative cwnd behaviors for TCP Tahoe and TCP Reno/NewReno (initial ssthresh value = 64 pkts). 
As a concluding remark, we can note that in the above case of multiple packet losses from the same window of data due to an initial excessive ssthresh value, the amount of traffic injected (i.e., area below the cwnd graph, the integral of the cwnd curve) by TCP Tahoe can be almost the same as (or in some cases even better than) TCP Reno/NewReno.
Finally, we remark that the optimal buffer size of the bottleneck link is B = BDP = 25 pkts. This setting allows us to maximize the utilization of bottleneck link resources. Moreover, the optimal setting for the initial ssthresh would be equal to BDP to avoid initial multiple packet losses or to avoid starting too early the congestion avoidance phase (BDP is also the regime value of ssthresh with B = BDP). However, the default choice of the initial ssthresh is to set it to an arbitrarily high value, corresponding to the initial (maximum) receiver window (socket buffer size), so that network conditions, rather than some arbitrary host limits, determine the sending rate.
[R1] 
R. Wang, G. Pau, K. Yamada, M. Y. Sanadidi, M. Gerla, “TCP Startup Performance in Large Bandwidth Delay Networks”, IEEE INFOCOM 2004.
Ex I.5 Let us refer to an FTP transfer (TCP ‘‘elephant’’ flow) on a network characterized by a Bandwidth-Delay Product (BDP) equal to 30 pkts. It is requested to plot the congestion window (cwnd) and ssthresh behaviors up to 40 RTTs in the TCP NewReno case under the following conditions:

· Bottleneck link buffer with capacity B = 10 pkts;
· Sockets buffers much larger than B + BDP;

· Initial ssthresh value equal to 16 pkts. 
Solution


Since rwnd is considered to be quite high, it has no impact on limiting the traffic injection into the network. Then, cwnd actually represents the amount of packets transmitted into the network on an RTT basis. The behaviors of cwnd and ssthresh are shown in Figure 1.8 according to the data provided in this exercise. There is an initial slow start phase; when cwnd reaches 16 pkts, a congestion avoidance phase begins. When cwnd overcomes the maximum allowed of 40 pkts (= B + BDP) at 30 RTTs, there is a packet loss, which is recognized by 3 DUPACKs before RTO expires: ssthresh is halved and cwnd is made equal to the new ssthresh value. Then, a new congestion avoidance phase begins. From this time onwards, cwnd has a periodic behavior according to a triangular waveform between B + BDP and (B + BDP)/2.


[image: image20]
Figure 1-8. Cwnd and ssthresh behaviors for TCP NewReno.

Ex I.6 Let us consider a TCP-based traffic flow with the cwnd behavior shown in Figure 1.9 (Figure 3.61 in the book), where the unit of time in abscissa is RTT. Assuming that this cwnd behavior is for the TCP Reno version, it is requested to answer the following questions:

· Identify where slow start and congestion avoidance phases are used in the graph.

· After time 34 RTTs, is the segment loss revealed by 3 DUPACKs or by an RTO expiration ?

· What is the initial ssthresh value ? and what is the ssthresh value after  time 34 RTTs ?

· If we know that the bottleneck link buffer has a capacity of 30 pkts, what is the value of the Bandwidth-Delay Product (BDP) ?

· When is the 63-th TCP segment sent ? (RTT interval)

[image: image21]
Figure 1-9. Cwnd behavior for TCP Reno.

Solution

In the graph in Figure 1.10, the TCP traffic begins at 1 RTT and we assume an infinite receiver window. The parts where slow start or congestion avoidance are used are detailed in Figure 1.10, which also contains the ssthresh behavior starting from an initial value of 32 pkts. Note that in this case, there is no difference between TCP Reno and TCP NewReno. In particular, we have a slow start phase (exponential growth of cwnd of the type 2x, where x is measured in RTT units) from 1 RTT up to 6 RTTs (duration of 5 RTTs) exactly when cwnd reaches the value of 32 pkts. From time 6 RTTs, cwnd behaves according to the congestion avoidance phase (linear growth of cwnd). When cwnd overcomes 58 pkts (cwndmax), there is one packet loss (time 33 RTTs), which is recognized by means of 3 DUPACKs: cwnd is halved and ssthresh is set equal to the new cwnd value. Then, a new congestion avoidance phase begins. At time 34 RTTs, ssthresh becomes equal to 58/2 pkts.

We know that the maximum cwnd value is the sum of the  Bandwidth-Delay Product (BDP) and the buffer capacity B: cwndmax = B + BDP. We know that B = 30 pkts and from the graph we see that cwndmax = 58 pkts. Hence, BDP results as: BDP = cwndmax B = 28 pkts.

At time 1 RTT, one packet has been sent; at time 2 RTT, two new packets are sent because of the slow start phase. The cumulative number of packets sent up to a given time in RTT units (arrival curve) is obtained as the integral of the cwnd curve. Hence, the 63-th TCP packet is sent at time 6 RTTs (i.e., 1+2+4+8+16+32 pkts are sent up to time 6 RTTs). 


[image: image22]
Figure  STYLEREF ChapterNo \* MERGEFORMAT 1-10. Cwnd behavior for TCP Reno with details on the different phases and corresponding ssthresh values.

Ex I.7 Let us consider a network adopting IntServ-Guaranteed Service as quality of service technique. We have a traffic source with fluid-flow model accessing the network. This traffic source is regulated according to the following T-Spec parameters: (r, p, b) = (1 kbit/s, 4 kbit/s, 500 bits) [1 token = 1 bit]. Following the arrival curve approach, it is requested to determine the minimum service rate R to guarantee a delay lower than or equal to max= 150 ms (let us neglect propagation delays).
Solution

The network is modeled as if it had a single node with service rate R. In this study, we consider a fluid-flow model for the traffic source (no packets). The traffic source is regulated in its access to the network according to the token bucket approach, where 1 token is needed for the transmission of 1 bit: if the bucket contains n tokens, n bits can be sent at the maximum rate p. No propagation delay is considered for this exercise. 

It has been proved in Section 3.5.1 of the book that the delay introduced by the network, D, can be bounded as: D ≤ b/R. Let us consider the worst-case condition: D = b/R. Then, the minimum value of R that allows to meet the max constraint is obtained as follows (see also Figure 3.18 in the book): 
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Then, we select the minimum value of R to fulfill max, that is R = b/max. We can use this value of R, because it allows us to fulfill the condition r < R < p, that is: r (= 1 kbit/s) < R (= 3.3 kbit/s) < p (= 4 kbit/s). The buffer occupancy B is upper bounded by b bits. 

 Hence, we can conclude that a minimum rate R = 3.3 kbit/s needs to be allocated to the traffic source regulated according to the token bucket scheme in order to guarantee an end-to-end delay lower than or equal to max = 150 ms.

Ex I.8 Referring to the IPv4 address 128.15.10.5, it is requested to determine:

· The class of the IPv4 address and the corresponding network address;

· The most efficient subnet mask for a subnet with 58 hosts;

· An example of IPv4 address of the above subnet.

Solution

This IP address belongs to Class B. The corresponding network address is 125.15.0.0. We need to define the subnet mask to address 58 hosts: we consider a subnet host ID with 6 bits that allows to address 262 = 62 hosts; this is the most efficient choice. Hence, the last two bytes of the subnet mask are: 11111111 11000000. The subnet mask in dotted-decimal notation results as: 255.255.255.192. With this mask we can define 210 = 1024 subnets, each addressing 62 hosts. Subnet address examples are: 128.15.0.64, 128.15.1.128, etc. With subnetting, the router makes an AND operation between an IP address and the subnet mask to determine the subnet to which the IP address belongs. For instance, the subnet address corresponding to the IP address 128.15.0.65 is 128.15.0.64; the host IP addresses in this subnet range from 128.15.0.65 to 128.15.0.126.
Ex I.9 It requested to determine the classes of the following IPv4 addresses:

a) 126.12.1.5

b) 198.15.1.7.

How many host addresses are available in the networks corresponding to cases a) and b) ?

Solution

The IP address 126.12.1.5 has the first byte in binary format as 01111110 and belongs to Class A. There can be 2242 hosts in a Class A network. The IP address 198.15.1.7 has the first byte in binary format equal to 11000110 and belongs to Class C. A Class C network can have 282 hosts.

Ex I.10 Let us consider the ON-OFF periodic traffic source (fluid-flow model) that is feeding a leaky bucket traffic regulator as shown in Figure 1.11 (Figure 3.62 in the book). Let r denote the rate of the source in the ON state. Let R denote the output rate of the regulator. We assume r ( R. It is requested to determine: (1) the stability condition; (2) the input traffic burstiness; (3) the maximum buffer occupancy; (4) the maximum delay imposed on the traffic by the leaky bucket regulator; (5) the behavior of the regulator buffer occupancy; (6) the output traffic behavior.
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Figure 1 STYLEREF ChapterNo \* MERGEFORMAT -11. Periodic ON-OFF traffic source at the input of a leaky bucket regulator.

Solution
The input traffic to the leaky bucket shaper is deterministic. Therefore, we need to adopt the methods of deterministic queuing in order to solve this exercise. The traffic has a fluid-flow model with a rate according to an ON-OFF behavior with mean rate Ravg given by:
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Intuitively, the stability condition requires that R ( Ravg, The input traffic burstiness  is given by:
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In order to study the behavior of this queuing system, we need to express the arrival curve that is obtained as the integral of the arrival traffic rate in Figure 1.11. We can study the system on a period from t = 0 to t = TON + TOFF, as shown in Figure 1.12, where the service curve due to the leaky bucket regulator is also reported.
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Figure 1 STYLEREF ChapterNo \* MERGEFORMAT -12. Arrival curve and service curve.
Figure 1.12 represents the limiting condition for the stability of the leaky bucket queue, where the bucket queue is emptied at the very end of the ON-OFF cycle of the input traffic. This happens under the following condition: R = rTON /(TON + TOFF). This is actually the limiting condition for stability, as highlighted above: R ( Ravg. In this limiting condition, we can determine both the maximum buffer length Bmax and the maximum delay Dmax imposed on the input traffic by the leaky bucket shaper. These values correspond to point A in the graph in Figure 1.12:
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The derivation of Bmax and Dmax is straightforward in the intermediate cases with Ravg < R ≤ r. In particular, reapplying the method of the arrival curve we have:
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Finally, the leaky bucket buffer occupancy has a behavior according to a triangular waveform as shown in Figure 1.13 for the limiting case R ( Ravg.
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Figure 1 STYLEREF ChapterNo \* MERGEFORMAT -13. Behavior of the buffer occupancy at the leaky bucket shaper in the limiting case R ( Ravg.
In the limiting case R ( Ravg, the output traffic has a rate, which is constant and equal to R (burstiness  = 1). In the intermediate cases with Ravg < R ≤ r, the output traffic has a rate according to an ON-OFF periodic waveform with period TON + TOFF; however, the ON phase is longer than TON, that is TON + Dmax, as determined by the intersection point between the arrival curve and the service curve with slope R (in the limiting case, this is point B in Figure 1.12).
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2. Exercises on Chapter 4: Survey on Probability Theory

This Section contains some exercises that involve the derivation of distributions, the use of PGFs, Laplace transforms, and characteristic functions.
Ex. 4.1 We know that a telecommunication equipment experiences failures after an exponentially distributed time with mean value 1/ (= Mean Time Between Failures, MTBF). Let us assume that a central control system monitors the status of the equipment at regular intervals of length T in order to verify whether there is a failure or not. We have to determine the probability mass function of variable N = number of checks to be made to find a failure (N = 1, 2, …) and the mean time to find the failure, Tf.
Solution

The pdf of the time interval X between failures fX(t) is exponentially distributed as:
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For this time interval we can use the memoryless property of the exponential distribution. Hence, if a check does not find any failure at a certain instant, the residual lifetime to the next failure is still exponentially distributed with mean rate as variable X. Therefore, every time the controller makes a check, it finds no failure with probability P given as:
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Since the system behavior is memoryless at each check, the probability mass function of random variable  is modified geometric, as detailed below:
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The mean value of random variable  is equal to 1/(1 P). Therefore, the mean time to find a failure, Tf, can be obtained as:
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Ex. 4.2 We consider a telephone private branch exchange with a single output line. At time t = 0 a data transfer (modem) starts that uses the output line for a duration U, modeled according to a uniform distribution in [0, T]. Let us assume that at time   > 0 a call arrives and finds a busy output line due to the previous data transfer. It is requested to determine the distribution of the time W the call has to wait before obtaining a free output line.
Solution

We consider a call that holds the output line from time t = 0 until time U. At a generic instant  a new call arrives that finds a busy output line; of course 0 <  < U ≤ T. We have to characterize the distribution of the residual life W of the first call after time . Similarly to (4.78), we derive the distribution of W = U –  as follows:
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where FU(t) is the PDF of the uniform random variable that can be expresses as:
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Random variable W belongs to the interval [0, T]. Hence, we can substitute the expression of FU(t) in the above formula of FW(t) as:
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Hence, the resulting PDF of W depends on instant . The corresponding pdf can be obtained by taking the derivative with respect to t:
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In conclusion, random variable W is uniformly distributed in the ‘‘residual’’ interval of length T  and this distribution is not independent of .
Ex. 4.3 A phone user A makes a call at time t0 through a private branch exchange with a single output line. It finds the line busy due to another call started from an indefinite time (the duration of calls is exponentially distributed with mean value 1/ = 3 min). We have to determine the probability according to which user A finds a busy output line if it tries again to call at time t0 + , where  is exponentially distributed with mean value 1/ = 2 min.
Solution

When user A makes the first attempt at time t0, it finds a busy output line and the residual lifetime of the call in progress is still exponentially distributed with mean rate  due to the memoryless property of the exponential distribution. The subsequent attempt of user A is made after a random delay . Let us condition this study on a given value  = t. Hence, at time t0 + t, user A still finds a busy output line according to the following probability:
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We remove the conditioning on by means of its exponential pdf with mean rate :
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If user A finds a busy output line at the reattempt, user A can decide to perform another attempt after a further wait for a time , where  is still exponentially distributed with mean value 1/ = 2 min. Hence, the probability of finding again a busy line is still 3/5 due to the memoryless property of the exponential distribution.

Ex. 4.4 Two transmitters simultaneously send the same information flow for redundancy reasons. Each transmitter has a failure after a time with exponential distribution and mean value T. Let us refer to the system at time t = 0 in which both transmitters are working properly from an indefinite time. Let us determine:

· The mean waiting time for the first failure, E[tm];

· The pdf of the time tM to have that both transmitters do not work;

· The mean value of tM.
When answering the above questions, please explain whether we need to adopt the memoryless property of the exponential distribution or not.
Solution

The time to have the first failure is:
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where t1 is the residual lifetime (from time t = 0) of transmitter #1 and t2 is the residual lifetime (from time t = 0) of transmitter #2.

Note that at instant t = 0, due to the memoryless property of the exponential distribution, the residual lifetimes of the transmitters (i.e., both t1 and t2) are still exponentially distributed with mean rate  = 1/T. Note that t1 and t2 are independent random variables since the transmitters have independent behaviors. Hence, on the basis of equation (4.81) in subsection 4.2.5.4 of the book, tm is still exponentially distributed with mean rate 2: E[tm] = 1/(2) = T/2.

The time to have that both transmitters do not work is:
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The probability distribution function of random variable tM can be derived on the basis of equation (4.38) in Section 4.2.2 of the book. In particular, we have:
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From the above result we can note that tM is not exponentially distributed. The pdf of variable tM is obtained as follows:
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The expected value of variable tM is obtained by means of the classical formula:
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Ex. 4.5 A private branch exchange has 4 output lines. Let us assume that a phone call arrives when 3 output lines are busy due to preexisting calls, so that this call uses the latest available line of output from the exchange. Assuming that no other call arrives at the exchange, we have to determine the mean time T from the arrival of the last call to the instant when all four calls are over. In this study, we consider that the duration of each call is exponentially distributed with mean value 1/.
Solution

The fourth call arrives at the private branch exchange at t = 0 and finds three other calls already in progress: the fourth call uses the latest free output line. 
In general, the mean time T from t = 0 to obtain that all four calls are ended, can be expressed as follows:
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where 1r (2r and 3r) is the residual lifetime of the 1-st (2-nd and 3-rd) call already in progress when the 4-th call arrives and 4 is the duration of this 4-th call admitted into the system.

But the derivation of T according to this approach can be heavy due to the determination of the pdf of random variable max{1r, 2r, 3r, 4}. Then we adopt another approach exploiting the properties of the exponential distribution. The residual lifetimes 1r, 2r, and 3r are still exponentially distributed with mean rate  due to the memoryless property of the exponential distribution. Then, the mean time T can be derived as follows:
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where T1 is the mean time to have the first call completion in the case of four calls in progress, T2 is the mean time to have the first call completion in the case of three remaining calls in progress, T3 is the mean time to have the first call completion in the case of two remaining calls in progress, and T4 = 1/  is the mean time for a call completion in the case of one call in progress.

Let us determine T1, T2, T3 and T4 as follows. T1 is the mean value of a random variable that is the minimum among four (independent) exponentially distributed random variables with mean rate  Hence, this random variable is still exponentially distributed (see subsection 4.2.5.4 of the book) with mean rate 4 and its mean value is T1 = 1/(4. Analogously, we have: T2 = 1/(3, T3 = 1/(2 and T4 = 1/. Finally, we obtain the following expression for T:
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Ex. 4.6 We have the following PGF X(z) of a discrete random variable X:
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We have to determine the following quantities:

· The mean value of X;
· The mean square value of X;
· The distribution of X;
· The minimum value of X.

Solution

Since we know the PGF of random variable X, we can derive mean and mean square values by means of the derivatives computed at z = 1:
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The distribution of random variable X can be obtained by considering that the PGF is the product of z2 and (1 p + zp)N. Hence, the random variable is obtained as sum of two independent random variables: 

· One with PGF z2, corresponding to the deterministic value 2;

· The other with PGF (1 p + zp)N that corresponds to a binomially distributed random variable Y on values [0, 1, 2, …, N] with probability parameter p:
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Hence, we have to consider the random variable X = 2 + Y, with the following probability mass function:
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The product of the PGF of Y by z2 causes that the distribution of Y is shifted by two values. Hence, the minimum value of X is 2.

Ex. 4.7 Let us consider a packet of N bits, containing a code able to correct t bit errors. Bit errors are independent (due to the use of interleaving) and occur with probability BER. It is requested to determine the packet error probability after decoding.

Solution

The probability to have k errors on a packet, Pk, is given by the following binomial distribution:
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where BER depends on the transmission process (e.g., modulation, channel conditions, transmission power level, receiver type, etc.).

Since the code can correct t bit errors, the Packet Error Rate (PER) after decoding is:
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In the special case of t = 0 (i.e., no coding), we have:
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Ex. 4.8 Let us consider the PGF M(z) shown below for random variable M:
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It is requested to determine:

· The probability mass function of M;

· The minimum value of M;

· The mean and the mean square value of M;

· The probability that M > 4.

Solution

In order to determine the probability mass function of M, we rewrite its PGF as follows:
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We note that the above PGF is obtained considering the following PGF L(z) computed for z equal to z2:
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Random variable L corresponding to the PGF L(z) has a modified geometric distribution with probability mass function as in (4.56):
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Note that L'(1) = 1/(1 p) and  L''(1) = 2/(1 p)2 2/(1 p) = 2p/(1 p)2.

Hence, random variable M with PGF M(z) is the composition of two discrete random variables: one with PGF z2, corresponding to the deterministic value 2, and the other with PGF L(z), corresponding to a modified geometric distribution. In particular, we have:
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The possible values of M are the even numbers: 2, 4, 6, …. The probability mass function of M is:
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From the above, the minimum value of M is 2. Moreover, mean and mean square values of variable M can be obtained through the derivatives of M(z) computed at z = 1:
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The probability that M > 4 is given as follows:
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Ex. 4.9 Let us consider the following function of complex variable z:
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May this function be the PGF of a discrete random variable ?
Solution

We can verify that X(z = 1) = 1, as requested for the normalization condition of a PGF. However, X(z) is not a PGF since it has a pole at z = ½ and this point is within the unit disc on the complex plane. Hence, this pole does not permit to have fulfilled condition (4.104) according to which a PGF X(z) must verify: |X(z)| ( 1 for |z| ( 1. 

Ex. 4.10 Let us consider a mobile phone operator that sells phone services according to two possible charging schemes: 

1. The cost of a phone call increases by a fixed amount at regular intervals (units); each charge is made in advance for the corresponding interval; the cost is c1 euros/interval and each interval lasts one minute; 

2. The cost of a phone call depends on the actual call duration according to a rate of c2 euros/min.

Assuming that the call duration is exponentially distributed with mean rate  in min1, it is requested to compare the two charging schemes in terms of average expenditure per call in order to find the most convenient one.

Solution

Let E[cost|#1] denote the mean cost of a call according to the first interval-based tariff plan; let E[cost|#2] denote the mean cost of a call according to the second actual time-based tariff plan.

In the first case, the cost of a call of length t is given by c1 ( (t(, where (x( denotes the smallest integer greater than or equal to x and where t is measured in minutes. From the exponential distribution of t, it is easy to show that (t( has a modified geometric distribution (with values: 1, 2, …). In particular, Prob{(t( = 1 min} = Prob{t ( 1 min} = 1 – e. Moreover, Prob{(t(  = 2 min} = Prob{1 min < t ( 2 min}= [1 – e]([ e], etc. Hence, the mean cost of a call in case #1 is as follows:
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In the second case, the cost of a call of length t is simply given by c2 ( t, where t is measured in minutes. We remove the conditioning on t by means of the density function of the call length, as follows:
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In order to compare E[cost|#1] with E[cost|#2], we consider the following numerical example: c1 = 0.10 euros/min and c2 = 0.15 euros/min. In Figure 2.1, we compare E[cost|#1] with E[cost|#2] for increasing values of the mean call duration (= 1/). We can note that the time-based tariff plan is better for calls with mean duration lower than about 1 min; whereas, the interval-based tariff plan is more convenient for calls with mean duration greater than 1 min. As a concluding remark, it is interesting to note that the cost comparison made in Figure 2.1 depends on the distribution of the call duration (i.e., exponential distribution in our study) and of course on the values selected for c1 and c2.
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Figure 2-1. Cost comparison of the two tariff plans.

Ex. 4.11 Let us consider the following functions of complex variable z: 
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For each case, we have to verify if it is a PGF and, if yes, it is requested to invert the function to obtain the corresponding probability mass function.

Solution

Function 
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 is not equal to 1 for z = 1, so that it cannot be a PGF.

Function 
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 is equal to 1 at z = 1 (normalization condition). This is the PGF of the random variable M with equiprobable values 1 and 2. This is the classical Bernoulli random variable translated of 1.

Function 
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can be seen as the product of z and 
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, where z represents the PGF of the deterministic variable ‘‘1’’ and where 
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is the PGF of a binomially distributed random variable. Hence, in this case we have a random variable obtained as 1 + L, where L is binomially distributed as: 
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for k = 0, 1, ..., 5.

Function 
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 can be expressed in the following equivalent form:  
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. It is easy to see that this function is the composition of the two following functions: 
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. N(z) is the PGF of a modified geometric distribution: 
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.  Moreover, M(z) is the PGF of the previously obtained random variable M = 1 with probability ½ and M = 2 with probability ½). Hence, the original function 
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 represents the PGF of the following random variable: 
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Ex. 4.12 Let us consider a random variable X with probability distribution function FX(x) and probability density function fX(x) for ( ≤ x ≤ +(. We are requested to determine the distribution of the new random variable obtained by taking only the positive values of X (truncated distribution). 

Solution

The truncated distribution of X (only positive values) can be expressed as follows by using the properties of the conditional probabilities:
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Then, the probability density function corresponding to the truncated distribution of X can be obtained by differentiating the previous expression as: 
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3. Exercises on Chapter 5: Markov Chains and Queuing Theory

This Section contains a collection of exercises where Markovian queues are adopted to model telecommunication systems.

Es. 5.1 We consider a Poisson arrival process with mean rate  at the input of a switch as shown in Figure 3.1 (Figure 5.21 in the book). Arrivals are distributed between the two output lines as follows:

· Output line #1 receives one arrival every Nm input arrivals;
· Output line #2 receives all arrivals not sent to output line #1.
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Figure 3-1. Switch that divides arrivals between the two output lines on the basis of a stochastic choice.

Let us assume that Nm is a random variable with distribution:
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We have to evaluate the probability density function of the interarrival times for output line #1 in order to characterize the arrival process at this line and the corresponding mean arrival rate.

Solution

Nm is a random variable with modified geometric distribution and PGF obtained as:
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Let us denote with ta the interarrival times for the Poisson input process to the system. Hence, ta is exponentially distributed with probability density function and characteristic function as:
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Let us study the interarrival times for output line #1, tu. We condition the study on a certain value Nm = k. The situation for k = 2 is depicted in Figure 3.1. Therefore, the conditional random variable tu|k is the sum of k independent identically distributed random variables of the ta type; the corresponding characteristic function can be obtained as follows:
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We remove the conditioning by weighting with the distribution of Nm:
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From the above characteristic function of tu, we can note that tu is exponentially distributed with mean rate /L (see a similar study carried out in the book in subsection 4.3.2.2). Hence, the output process of line #1 is Poisson with mean rate /L.

Ex. 5.2 We consider a buffer that receives messages to be sent. Two modems are available to transmit messages; modems operate at the same speed. We know that: 

· The message arrival process is Poisson with mean rate ,

· The message transmission time is exponentially distributed with mean value E[X].

It is requested to determine the following quantities:

· The traffic intensity offered to the buffer in Erlangs,

· The mean number of messages in the buffer,

· The mean delay from a message arrival at the buffer until it is transmitted completely.

· Could the buffer support an input traffic with  = 10 msgs/s and E[X] = 2 s ?

Solution

This system can be modeled as an M/M/2 queue with mean arrival rate  and mean completion rate  = 1/E[X]. The queue is stable under the ergodicity condition, i.e.,  < 1, meaning that the limiting input load  =  supported by the system is 2 Erlangs. We can study this system by means of a Markov chain, as shown in Figure 3.2. Under the stability assumption, the Markov chain can be solved by means of cut equilibrium conditions.
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Figure 3-2. M/M/2 queuing model of the system and corresponding Markov chain.

[image: image92.wmf]K

0

,

2

2

  

:

balance

 

cut 

...

2

2

  

:

balance

 

3

cut 

2

2

  

:

balance

 

2

cut 

  

:

balance

 

1

cut 

0

0

2

3

3

3

2

0

2

2

2

1

0

1

1

0

>

÷

ø

ö

ç

è

æ

=

=

Þ

=

=

Þ

=

=

Þ

=

n

P

P

n

P

P

P

P

P

P

P

P

P

P

P

P

n

n

r

r

m

l

r

m

l

r

m

l



Finally, we can use the normalization condition in order to obtain P0:
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Note that the stability condition P0 > 0 (i.e., the queue occasionally needs to be empty to be stable) entails  < 2 Erlangs.


The mean number of messages in the system N can be obtained by means of the first derivative of the PGF P(z) of the state probability distribution. This PGF is given by the sum of different contributions of the type znPn; hence, the term z0P0 does not count for the first derivative that is used to determine N. This is the reason why we use a modified P(z) function, called P*(z), as:
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Note that P*(z) is not a PGF [P*(z = 1) is not equal to 1], however, it can be used as if it was a PGF to calculate its first derivative at z = 0 in order to determine N as:


[image: image95.wmf](

)

(

)

2

1

2

1

4

4

2

2

2

4

*

r

r

r

r

r

r

-

=

-

+

-

=

=

=

=

z

z

z

dz

z

dP

N


The mean message delay to cross the queuing system (from arrival until transmission completion) can be obtained by means of the Little theorem as:
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As for the last question, we need to evaluate the input traffic intensity  =  = 10 msgs/s ( 2 s = 20 Erlangs and this value exceeds the maximum load of 2 Erlangs of the stability limit. 

Ex. 5.3 An Internet Service Provider (ISP) has to dimension a Point of Presence (POP) in the territory, which can handle up to S simultaneous Internet connections (due to a limited number of available IP addresses and/or because of a limited processing capacity). If a new Internet connection is requested to the POP by a user when there are other S connections already in progress, the new connection request is blocked. We have to determine S, guaranteeing that the blocking probability PB < 3 %. We know that:

· Each subscriber generates Internet connections according to a Poisson process with mean rate ;

· Internet sessions have a duration that is generally distributed;

· Each subscriber is connected to the POP on average 1 hour per day, thus contributing a traffic load of about 41 mErlangs;
· We consider U = 100 subscribers/POP.
Solution

The POP system can be modeled as an M/G/S/S/U queuing system where each user contributes a (maximum) traffic intensity u = 41 mErlangs. Note that in this exercise a server is a resource (e.g., an IP address) needed to carry on a connection. The blocking probability for this queue, PB, is upper bounded by the blocking probability of the corresponding M/G/S/S queuing system with infinite population of users and with total traffic intensity  = U×u. On the basis of the insensitivity property, the M/G/S/S system is equivalent to an M/M/S/S system with the same traffic intensity . In conclusion, the blocking probability PB can be approximated by the Erlang-B formula (5.37) with S and  according to our system:
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We have to determine the S value so that PB ( 3 % for an input traffic intensity  = U×u = 4.1 Erlangs. Hence, by using Table 5.1 on the PB ( 3 % column, we arrive at a traffic intensity value immediately greater than 4.1 Erlangs and this value corresponds to S = 9, the required capacity of simultaneous connections for our POP. 

Ex. 5.4 We consider a traffic regulator that manages the arrivals of messages at a buffer of a transmission line. Messages arrive according to exponentially distributed interarrival times with mean rate l. The traffic regulator acts as follows: a newly arriving message is sent to the transmission buffer with probability q; otherwise, a newly arriving message is blocked with probability 1 q. The message transmission time has an exponential distribution with mean rate . It is requested to determine:

· A suitable model for the buffer,

· The stability condition for the buffer,

· The mean delay from the arrival of a message at the buffer until its complete transmission.

Solution

The scheme of the system envisaged by this exercise is depicted in Figure 3.3.
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Figure 3-3. Traffic regulator and transmission buffer.

At the output of the traffic regulator, the arrival process is still Poisson, since it is obtained as random splitting of a Poisson process. Therefore, the transmission buffer admits an M/M/1 queuing model with mean arrival rate lq and mean completion rate . The stability condition depends on the traffic intensity offered to the buffer:  = lq/ < 1 Erlang. The state probability distribution can be derived from the cut equilibrium conditions and the normalization one. Therefore, the mean number of messages in the buffer, N, can be obtained directly from (5.23) of the book and the mean message delay, T, is obtained by means of the Little theorem as in (5.24):
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Ex. 5.5 We consider a multiplexer, which collects messages arriving according to exponentially distributed interarrival times. The multiplexer is composed of a buffer and a transmission line. We make the following approximation: the transmission time of a message is exponentially distributed with mean value E[X] = 10 ms. From measurements on the state of the buffer we know that the empty buffer probability is P0 = 0.8. It is requested to determine the mean message delay. 

Solution

The multiplexer can be modeled as a queue with a single server: the arrival process is Poisson with mean rate  (to be determined); the service time is approximated as exponentially distributed with mean rate  = 1/E[X]. Hence, the queue is of the M/M/1 type. According to (5.21) of the book, the empty queue probability, P0, is obtained as follows: P0 = 1 – . Since P0 = 0.8 (if P0 > 0 the system is stable, because the ergodicity condition   < 1 Erlang is fulfilled), we have  = 0.2 Erlangs. Since  / = (10 ms, we obtain  = 0.2/10 msgs/ms. The mean number of messages, N, in the M/M/1 queuing system is given by (5.23) as N = /(1  ) = 0.2/0.8 = 0.25 msgs. According to the Little theorem, the mean message delay, T, is obtained as T = N/ = 2.5/0.2 ms = 12.5 ms.

Ex. 5.6 We consider a private branch exchange, which collects phone calls generated in a company where there are 1000 phone users, each contributing a Poisson traffic of 30 mErlangs. We have to design the number S of output lines from the private branch exchange to the central office of the public network in order to guarantee a blocking probability for new calls lower than or equal to 3 %. What is the increase in the number of output lines if the number of users becomes equal to 1300, still requiring a blocking probability of 3 % ? It is requested to compare the percentage traffic increase % with the percentage increase in the number of output lines S %.
Solution

Since there are P = 1000 independent users, each generating an elementary Poisson traffic of 30 mErlangs, we adopt the approximation of an infinite number of users: our M/M/S/S/P system is approximated by the corresponding M/M/S/S queue with the same (maximum) traffic intensity; this approach allows us to achieve a conservative estimation of S, the number of output lines. Referring to the classical telephony, we know that calls have an exponentially distributed duration with mean value 1/ = 3 min. The value of S can be determined according to the blocking probability requirement. The input traffic intensity can be evaluated as:

· Each user contributes a mean arrival rate of phone calls equal to 30(103 Erlangs / 3 min = 102 calls/min;

· The total mean arrival rate (Poisson process) is  = 1000(102 calls/min = 10 calls/min.
· Therefore, the total traffic intensity offered to the private branch exchange is  = / = 30 Erlangs. 
The value of S can be determined by means of the 3 % column in an extended Erlang-B table with respect to that shown in Table 5.1 of the book. Correspondingly, we obtain S = 38 output lines.

If the number of users grows to 1300, the total traffic intensity offered to the private branch exchange becomes  = / = (1300(102 calls/min) ( (3 min) = 39 Erlangs. Hence, according to an extended Erlang-B table, we need S = 47 servers to guarantee a blocking probability  lower  than  or  equal  to 3 %. With respect to the previous case of 1000 users there has been a percentage traffic increase % = 100((39 – 30)/30 ( 30 % and a corresponding percentage increase in the number of output lines S %  =  100((47 38)/38 ( 23.7 %. Hence, we notice that output lines have a sort of multiplexing effect because S %  < %: the more the traffic, the better the utilization of channels for a given fixed constraint on the call blocking probability.

Ex. 5.7 We have a packet-switched telecommunication system where N simultaneous phone conversations with speech activity detection are managed by a central office. A Markov chain with ON and OFF states is adopted to model the behavior of the traffic of each voice source, as shown in Figure 3.4 (Figure 5.22 in the book). In the ON state, a voice source generates a bit-rate RON; in the OFF state, no bit-rate is produced.
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Figure 3-4. Model of a voice source with activity detection.

We have to determine the statistical distribution of the total bit-rate generated by the N sources that produce traffic at the central office. 
Solution
The total traffic offered to the central office is the aggregation of N sources (phone conversations) as shown in Figure 3.5.
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Figure 3-5. Traffic contributions offered to the central office due to simultaneous conversations from different users.

Each voice source with speech activity detection has an ON-OFF behavior that can be modeled by a Markov chain as shown in Figure 3.4; this chain can be solved by imposing a cut equilibrium condition and the normalization condition:
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where PON (POFF) is the ON (OFF) probability. Note that the two-state chain always admits a regime.

Let Ri denote the bit-rate produced by a voice source: Ri = (i RON , where we have used the following Bernoulli variable:


[image: image103.wmf]î

í

ì

-

=

=

ON

OFF

ON

i

P

P

P

1

,

0

,

1

c


The aggregate bit-rate produced by the N voice sources is Rt obtained as:
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Variables (i for i =1,…, N are independent identically distributed. On the basis of the (i definition, we have that its PGF is (i(z) = 1 PON + zPON. Hence, the PGF of 
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 is  [(i(z)]N = [1 PON + zPON]N. This is the PGF of a binomial distribution:
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Since there is proportionality between the number of active voice sources and the bit-rate generated, we obtain the following bit-rate distribution:
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The maximum bit-rate is NRON. The mean bit-rate E[Rt] is 
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Ex. 5.8 Referring to the network of queues in Figure 3.6 (Figure 5.23 in the book), we need to determine the mean number of messages in all queues of the network and the total mean delay of a message from input to output of the network.
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Figure 3-6. System composed of two queues.

Solution

Let us assume that all arrival processes with rates 1, 2 and 3 are independent and Poisson. Moreover, let us assume that the message transmission times at queues #a and #b are exponentially distributed with mean rates a and b, respectively. The arrival process sum of arrivals with mean rates 1 and 2 is still Poisson with mean rate 1 + 2; then, this traffic is stochastically divided into two Poisson sub-processes towards queues #a and #b. Consequently, the input process to queue #a is Poisson with mean rate a = 3 + p(1 + 2); instead, the input process to queue #b is Poisson with mean rate b = (1 p)(1 + 2). In conclusion, both queues #a and #b are of the M/M/1 type with traffic intensity a = a/a = 1/2 Erlangs and b = b/b = 3/4 Erlangs. The stability condition is fulfilled for both queues. Therefore, the mean number of messages in queue #a and in queue #b are obtained from (5.23) of the book as Na = a/(1 a) = 1 msg and Nb = b/(1 b) = 3 msgs, respectively. The total mean number of messages in the system is N = Na + Nb. The total mean delay of a message, T, is given by applying the Little theorem to the entire system of the two queues with total mean number of requests N and total mean message arrival rate  = 1 + 2 + 3 = 16 msgs/s: T = N/ = 1/4 s.

Ex. 5.9 We have a buffer for the transmission of messages, which arrive according to exponentially distributed interarrival times with mean value E[X]. The transmission time of a message is according to an exponential distribution with mean value E[T]. The buffer adopts a self-regulation technique: when the number of messages in the buffer is greater than or equal to S, any new arrival can be rejected with probability 1 p (queue management, according to a policy similar to Random Early Discard, RED). It is requested to model this system to identify the stability condition for the buffer, and to evaluate the probability that a new arrival is blocked and refused.
Solution

The arrival process to the queue is Poisson and service times are exponentially distributed. Therefore, we would have a classical M/M/1 system if there was no self-regulating mechanism, which causes the arrival rate to be equal to p for states i ( S of the Markov chain modeling the system in Figure 3.7.
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Figure 3-7. Markov chain model.

Let  = / denote the input traffic intensity. The ergodicity condition is met if p/ < 1 Erlang. We can solve the Markov chain by stating cut equilibrium conditions and the normalization condition as follows:
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The blocking probability for a new arrival, PB, is the probability that a new arrival finds the system in a generic state i ( S (PASTA property) and that the self-regulating mechanism rejects it:
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Ex. 5.10 A link uses two parallel transmitters at 5 Mbit/s. Each transmitter has a buffer with infinite capacity to store messages. Messages arrive at the link according to a Poisson process with mean rate  = 20 msgs/s and have a mean length of 100 kbits. A switch at the input of the link divides the messages between the two transmitters with equal probability.

· We have to evaluate the mean delay T from message arrival to transmission completion.

· We assume that the operator substitutes the two transmitters with a single transmitter having a rate of 10 Mbit/s; we have to evaluate the mean message delay in this case and compare this result with that obtained in the previous case.

Solution
First part (see Figure 3.8). We assume that the message transmission time is exponentially distributed with mean value E[X1] = 100 kbits/(5 Mbit/s). The input message arrival process is divided with equal probabilities between the two transmission buffers. Due to the random splitting, each queue receives a Poisson arrival process with mean rate /2, corresponding to a traffic intensity 1 = E[X1]/2 = 0.2 Erlangs (1 < 1 Erlang ( stability). Each transmission buffer can be modeled by an M/M/1 queue. Therefore, on the basis of (5.23) in the book, the mean number of messages in each buffer is N1 = 1/(1 1) = 0.25 msgs and the mean message delay T1 is determined by means of the Little theorem as: T1 = N1/(/2) = 2N1/ = 0.025 s.

Second part (see Figure 3.8). We still consider that the message service time is exponentially distributed with mean value E[X2] = 100 kbits/(10 Mbit/s) = E[X1]/2. In this case, the buffer admits an M/M/1 model with mean arrival rate , so that the input traffic intensity is 2 = E[X2] ( 1 Erlangs = 0.2 Erlangs (2 < 1 Erlang ( stability). On the basis of (5.23) in the book, the mean number of messages in the buffer is N2 = 2/(1 2) ( N1 and the mean message delay is obtained as T2 = N2/= T1/2 = 0.0125 s. This result highlights that, instead of sharing the transmission bandwidth on different transmitters, it is better to concentrate it on only one transmitter in order to exploit the multiplexing effect.
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Figure 3-8. Two different arrangements for the available bandwidth on a link and, consequently, two queuing models.
Ex. 5.11 We have an M/M/1 queue with mean arrival rate , mean service time , and FIFO service discipline. It is requested to obtain the Laplace transform of the probability density function of the delay. What is the probability that a generic arrival finds an empty queue ?
Solution

The M/M/1 queue is characterized by a traffic intensity  = / and we have to assume that < 1 Erlang in order to guarantee stability. The state probability is geometrically distributed with PGF P(z) given by equation (5.22) in the book as:
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Hence, on the basis of the M/M/1 queuing delay analysis in Section 5.11.1 of the book, we have that the Laplace transform of the probability density function of variable TD, the queuing delay, is obtained from P(z) by means of the substitution z = 1 s/:
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Due to the PASTA property, a generic arrival finds an empty queue with the probability that the queue is empty, P0. We have that P0 = 1 – , according to the M/M/1 state probability distribution in (5.21) of the book.

Ex. 5.12 A radio link adopts four parallel transmitters for redundancy reasons. The operational characteristics of the transmitters require that each of them is switched off (for maintenance or recovery actions) according to a Poisson process with mean interarrival time of 1 month. A technician performing maintenance and recovery actions needs an exponentially distributed time with mean duration of 12 hours in order to fix a problem. Two technicians are available. We have to address the following issues:

1. To define a suitable model of the system;

2. To determine the probability distribution of the number of transmitters switched off at a generic instant;

3. To derive the probability that no transmitter is working for this radio link.
Solution


The system can be modeled as a Markov chain with five states (j = 0, 1, ..., 4) denoting the number of transmitters that are not working. We exploit the memoryless property of the exponential distribution for both the interarrival times of the recovery actions for a transmitter with mean rate  (= 1 maintenance action/month) and the repairing times with mean rate  (= 1/12 repairing actions/hour). The transition from state j (0 ≤ j < 4) to the state with j + 1 non-working transmitters is the minimum among 4 j iid times with exponential distribution and mean rate ; this time is exponentially distributed with mean rate (4 j). As for the transition from the generic state j (1 < j ( 4) back to the state with j 1 non-working transmitters, we consider that it is performed after a time interval, which is the minimum between the two independent times needed by the two technicians to reactivate their transmitters; since both times are exponentially distributed with mean rate , this transition occurs after an exponentially distributed time with mean rate 2. Of course the transition from state j = 1 to state j = 0 is according to an exponentially distributed time with mean rate . Figure 3.9 shows the Markov chain model of the M/M/2/4/4 type.
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Figure 3-9. Markov chain model of the system.

We can state cut equilibrium conditions as follows:
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and the normalization condition:
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Finally, the probability (or time percentage) that no transmitter is working is equal to the probability of state j = 4, P4.

Ex. 5.13 A transmission system for messages (composed of packets) is characterized as follows: 

· The probability distribution of the number of messages in the system can be approximated by that of an M/M/1 system, which is empty with probability P0 = 0.5.

· Each message is composed of a random number of packets according to the following distribution:
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We have to determine the probability distribution of the total number of packets in the queuing system. Moreover, let us consider the transmission system at a given instant: assuming that we have started to count 10 pkts in the queue and that there are other packets, what is the distribution of the number of packets remaining in the queue ?

Solution

The distribution of the number of messages in the system is of the M/M/1 type: Pn = (1 )n, where  = 1 – P0 = 0.5. The corresponding PGF can be obtained from (5.22) in the book as:
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The distribution of the number of packets per message is modified geometric with the following PGF L(z):
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Due to the memoryless property of the geometric distribution, we consider that the residual number of packets of the currently served message has a length with the same distribution of the entire message [i.e., with PGF still equal to L(z)]. The distribution of the number N of packets in the system can be characterized by means of its PGF, N(z). We first condition on a given state with M = n messages in the system. Since the lengths of different messages are iid, the PGF of the number of packets in the system is Ln(z). We remove the conditioning on M in order to achieve N(z) as:
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This PGF (composition of a geometric and a modified geometric distribution) does not correspond to a known distribution. The inversion of this PGF is only possible by means of a numerical method as shown in equation (4.109) of the book.
Moreover, this exercise requires studying the statistics of the number of packets in the system in a special case, when we know that there is a given number of packets in the queue. Therefore, we can assume that in this case there is at least one message in the system: M > 0. We have to consider the probability distribution of the number of messages in the system conditioned on the fact that there is at least one message: Prob{M = n | M > 0}. The unconditional probability is denoted here by Prob{M = n} and coincides with Pn previously used. By definition of conditional probability, we have:
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Hence, we obtain the probability Prob{M = n | M > 0} as follows:
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As expected, Prob{M = n | M > 0} is a modified geometric distribution with PGF P*(z) as:
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In this study conditioned on a non-empty buffer, we have that the number of packets in the system is characterized by the PGF N(z | M > 0) obtained as:
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As shown in the book (subsection 4.3.1.2), we can note that the composition of two modified geometric random variables with parameters 1  and q, respectively, has still a modified geometric distribution with parameter (1 )q. In conclusion, N(z | M > 0) is the PGF of a modified geometric distribution. We can apply the memoryless property also to a modified geometric distribution. Then, assuming that there are more than 10 pkts in the queue, we have that the residual number of packets after the first 10 ones is still with modified geometric distribution and parameter (1 )q.

Ex. 5.14 We consider a traffic source, which generates traffic according to the following process:

· Message arrivals occur according to a Poisson process with mean rate ;

· Each arrival triggers the generation of the packets of a message. A message has a length in packets according to a modified geometric distribution with mean value L. The packets of a message are not generated instantaneously, but are generated at a constant rate of r pkts/s.

We have to determine the distribution of the number of packets generated simultaneously by the traffic source at a generic instant.

Solution


This traffic source can be modeled by means of an M/G/( queue. This is due to the fact that the arrival of messages is Poisson; moreover, there is no waiting part and the service of each message has a duration corresponding to the time to generate all packets of a message. The state of the M/G/( queue is the number of simultaneously active messages. The mean service time of a message is equal to L/r. The traffic intensity offered to the queue is  = (L/r Erlangs. There are no stability problems since the number of servers is infinite. The M/G/( queue can be analyzed by means of the equivalent M/M/( queue with the same traffic intensity, as shown in Section 5.10 of the book. Hence, the state probability Pi is Poisson distributed with parameter , as shown in (5.42) of the book:
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Pi also represents the probability that i packets are simultaneously generated by the traffic source because of the presence of i messages. 

This traffic model is common in the literature, but with a different distribution of the number of packets per message; a typical case is that with a Pareto distributed message length (heavy-tailed distribution).

Ex. 5.15 We have a transmission line sending the messages arriving at a buffer. Each message can wait for service for a maximum time (deadline). A message not serviced within its deadline is discarded from the buffer. We model the maximum waiting time of a message as a random variable with exponential distribution and mean rate . Messages arrive according to a Poisson process with mean rate  and their transmission time is exponentially distributed with mean rate . We need to determine:

1. A suitable queuing model for the system;

2. The mean number of messages in the transmission buffer.

Solution

We model this system by means of a chain where the state denotes the number of messages in the system. The mean arrival rate is . If messages have not a deadline, the system is described by a classical M/M/1 model with mean arrival rate  and mean completion rate . Instead, the presence of deadlines necessitates a change in the completion rates, as detailed below.
When there is a served message and another message is in the waiting list (i.e., state j = 2), this message can wait for receiving service for an exponentially distributed time with mean rate . Therefore, the transition from state j = 2 to state j = 1 is characterized by the minimum between two exponentially distributed times with mean rates  (service completion) and  (deadline expiration), respectively. Hence, the transition from state j = 2 to state j = 1 occurs after an exponentially distributed time with mean rate + . In general, the transition from state j to state j 1 occurs with mean rate + (j 1), also applying the memoryless property of the exponential distribution. Therefore, we have obtained the Markov chain model shown in Figure 3.10.


[image: image129.wmf] 

0

 

1

 

2

 

3

 

m

 

l

 

m

+

g

 

l

 

m

+2

g

 

l

 

…..

 

…..

 

…..

 


Figure 3-10. Markov chain model of the system.

This Markov chain is always stable, because there will always be a  value of j, starting from which /[ + (j 1)1. We write the cut equilibrium conditions as:
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We obtain P0 by means of the normalization condition as:
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The mean number of messages in the buffer can be expressed as:
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Ex. 5.16 We have an ISDN private branch exchange with two output lines (i.e., ISDN Basic Rate Interface) and no waiting part. This exchange can receive two different types of calls, with corresponding independent arrival processes:
· A type #1 phone call requiring one output line. This arrival process is Poisson with mean rate 1 and the call length is exponentially distributed with mean rate 1.

· A type #2 phone call requiring two output lines. This arrival process is Poisson with mean rate 2 and the call length is exponentially distributed with mean rate 2.

A new call arriving at the exchange is blocked and lost if it needs a number of output lines greater than those available. We have to model this system and to determine the blocking probability for both type #1 and type #2 calls.
Solution

We model the system by means of a Markov chain where the state denotes the number of busy lines. The transitions are related to exponentially distributed time intervals. The Markov chain is shown in Figure 3.11, where we note that two distinct states with two output busy lines are possible since we can have that the two output lines are used either by two type #1 calls or by one type #2 call. These states are denoted by (2,2) and (2,1), respectively.
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Figure 3-11. Markov chain model of the system.

The state probability distribution of the Markov chain can be obtained by stating flow equilibrium conditions for the states rather than that for the cuts (see Figure 3.11).
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Through some algebraic manipulations, we achieve the following expressions:
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Hence, the normalization condition gives P0 as follows:
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On the basis of the PASTA property, a type #1 call is blocked with the probability PB,1 that the system is in the states (2,1) and (2,2); a type #2 call is blocked with the probability PB,2 that the system is in the states 1, (2,1) and (2,2).
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Ex. 5.17 We consider a Private Branch eXchange (PBX) with a single output line. Calls arrive according to exponentially distributed interarrival times with mean rate . The length of each call is according to an exponential distribution with mean rate . We have to analyze two different cases.

· Case #1: The PBX can put new calls on a waiting list, if they find a busy output line. It is requested to model this system and to express the probability that an incoming call is put on the waiting list, PC.

· Case #2: The PBX has no waiting list: if an incoming call finds a busy output line, the call is blocked and lost. It is requested to model this system and to express the call blocking probability PB. What is the maximum traffic intensity in Erlangs that can be supported with a blocking probability lower than 1 % ?

Finally, we have to compare the stability limits of these two different cases.
Solution

Case #1

The arrival process is Poisson with mean rate ; the call duration is exponentially distributed with mean rate . Hence, the PBX can be modeled by means of an M/M/1 queue with infinite waiting rooms for calls, as shown in Figure 3.12. The state is the total number of calls in the PBX, both the call served and the waiting ones.
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Figure 3-12. M/M/1 model.

The intensity of the arrival process (traffic) is  = /. We require that  = / < 1 Erlang for queue stability. The state probability distribution is obtained from (5.21) of the book as:
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On the basis of the PASTA property, a newly arriving call finds a busy server and is put on the waiting list according to the probability PC that the queue is in states 1, 2, 3, …. This is given by the Erlang-C formula, written below for the case with one server:
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Case #2

The queuing model is still of the M/M/... type, but now there is just one place in the queue (i.e., the place of the call served). Therefore, the model is M/M/1/1 with a two-state Markov chain as shown in Figure 3.13. 
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Figure 3-13. M/M/1/1 model.

Let  = / still denote the input traffic intensity. We can state the cut equilibrium condition and the normalization one in order to find the state probability distribution P0 and P1:
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On the basis of the PASTA property, a newly arriving call is blocked and lost according to the probability of state 1 (i.e., Erlang-B formula for one server): PB ( P1 = /(+ ) = /(+ ). The maximum input traffic intensity  in order to have PB ( 1 % is obtained as /(+ ) = 0.01  (  = 0.01/(1–0.01) Erlangs.

Comparison between cases #1 and #2
In case #1, the system does not block any calls, but there is a maximum traffic intensity of 1 Erlang that can be allowed. In case #2, the system refuses new arrivals if they find a busy output line; the system has no stability problems and can also work with > Erlang, but experiencing a high blocking probability.

Ex. 5.18 We have a Time Division Duplexing (TDM) transmission line. The arrival process from this line is characterized as follows on a slot basis (duration Ts):

· The slot-based arrival process is memoryless.

· A slot carries a message (containing a random number of packets) with probability p and is empty with probability 1 p.

· The lengths of messages in packets are iid; let L(z) denote the PGF of the message length in packets.

The messages coming from the TDM line are switched on a slot basis on two different output lines, A and B, as detailed in Figure 3.14 (Figure 5.24 in the book). The switching process is random and memoryless from slot to slot: a message is addressed towards line A with probability q; instead, a message is addressed towards line B with probability 1 q.

It is requested: (1) to characterize the arrival process of messages at line A on a slot basis; (2) to determine the PGF of the number of packets arrived at line A on a slot basis. 
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Figure 3-14. TDM line with random splitting.

Solution

A slot of output line A carries one message with probability pq and is empty with probability 1 pq. This process is uncorrelated from slot to slot. Hence, we have a Bernoulli arrival process of messages on a slot basis for line A. The number of messages carried out by line A on a slot basis is characterized by the following PGF XA(z): 
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Each message has a length in packets that is given by the PGF L(z). Therefore, the number of packets arrived in a slot is according to a compound distribution due to the random arrival of messages and their random length in packets. This distribution is characterized by the PGF XA[L(z)] as follows:
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Note that line A receives packets according to a mean rate obtained as:
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Ex. 5.19 Let us refer to a node of a telecommunication network receiving a packet-based traffic as follows:

· Messages arrive according to exponentially distributed interarrival times with mean value Ta; 

· Each message is composed of a binomially distributed number of packets with mean value M (
);

· The maximum length of a message is equal to L pkts.
We need to derive:

· The PGF of the number of packets arrived in a generic time interval T;

· The mean number of packets arrived in T.

Solution

The message arrival process is Poisson with mean rate 1/Ta. According to (5.6), the PGF of the number of message arrivals in T, Am,T(z), is:


[image: image147.wmf](

)

(

)

1

,

-

=

z

T

T

T

m

a

e

z

A


Each message contains a number of packets N according to a binomial distribution with mean value M and maximum length L, as follows:
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where parameter p can be obtained from the mean length Lp = M ( p = M/L.

The PGF of variable N is expressed as:
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The number of packets arrived in a time T, Ap,T, is according to a compound distribution because of the number of message arrivals in T and the number of packets per message:
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The mean number of packets arrived in T can be obtained from the derivative of the PGF Ap,T(z) computed at z = 1:
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Ex. 5.20 We have a group of modems that receive Internet dial-up connections (circuit-switched calls) from a very large number of different users according to exponentially distributed interarrival times with mean value of 10 s. We have to determine:

1. The PGF of the number of calls arrived in a generic interval T.

2. The probability that, starting from a generic instant, more than 20 s are needed to receive the third call.

3. The PGF Ac(z) of the number of calls arrived in the time interval of the duration of a call, which is exponentially distributed with mean rate .
Solution

The arrival of phone calls at the group of modems is according to a Poisson process with mean rate  = 1/10 s1. Hence, the number of phone calls arrived in an interval of duration T, AT, has the following distribution:
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According to (5.6), the PGF of the number of calls arrived in T, AT(z), is:
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The probability that starting from a generic time instant, more than 20 s are needed to receive the third call, is the probability to have 0, 1 or 2 arrivals in 20 s according to the Poisson process:
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Finally, in order to derive the PGF Ac(z), we exploit the fact that if we condition on a call length equal to T, we have that Ac,T(z) ( AT(z). We remove the conditioning by means of the distribution of the call length:
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According to equation (4.145) of the book, we know that the Laplace transform of et is equal to /( + s). Hence, on the basis of the above derivations, we see that Ac(z) is given by the Laplace transform applied to the pdf et of the call duration and computed at s = (z1) = (1 z); see Section 5.11.1 in the book.
Ex. 5.21 We have m independent Poisson arrival processes of messages, each with mean rate . Messages arrive at a transmission system, which has a total transmission capacity C. Each message requires an exponentially distributed time to be sent (service time). It is requested to compare the mean delay experienced by a message in two different cases for what concerns the sharing of capacity C:

1. We use a distinct queue for each traffic flow (deterministic multiplexing): each queue has a transmission capacity C/m, corresponding to a mean message transmission time equal to 1/.

2. We use a single queue collecting all traffic flows (statistical multiplexing), with a transmission capacity equal to C and a corresponding mean message transmission time equal to 1/(m).
Solution

In the first case, the system is modeled by m M/M/1 queues, each corresponding to a traffic flow with mean arrival rate  and mean completion rate . Each queue is stable if  = / < 1 Erlang. The mean number of messages in each queue is given by (5.23) as N1 = /(1 ). By means of the Little theorem, the mean message delay in the first case is T1 = N1/ = 1/().

In the second case, all the traffic flows are merged to form a Poisson process with mean rate m. In this case, the mean message completion rate is m. The system is modeled by one M/M/1 queue (multiplexer) with traffic intensity  = m/(m) ( . This queue is stable if  =  < 1 Erlang. The mean number of messages in the queue is given by (5.23) as N2 = /(1 ) = N1. By means of the Little theorem, the mean message delay in the second case is T2 = N2/(m = N1/(m = T1/m. Hence, the statistical multiplexing operated in the second case allows to significantly reduce the mean message delay. The advantage of the multiplexing approach increases with the value of m.

Ex. 5.22 Let us consider a buffer of a transmission system (= queuing system), where packets arrive according to an ON-OFF traffic source (see Figure 3.15, i.e., Figure 5.25 in the book). Sojourn times in ON and OFF states are exponentially distributed, with mean rates ON and OFF, respectively. When the source is in the OFF state, no packet is generated. When the source is in the ON state, packets are generated at a constant rate of r pkts/s. Considering that the system needs a time T to transmit a packet, we have to determine:

1. First case:

· 
The burstiness index of the traffic source as a function of parameters ON and OFF.

· 
The traffic intensity offered to the system in Erlangs.

· 
The mean number of packets in the system (buffer), N, if the mean delay to transmit a packet is equal to 5T.

2. Second case: if ON = 1 s1, OFF = 1/3 s1, r = 4 pkts/s, and T = 1 s, is the transmission system stable or not ?
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Figure 3-15. Model of the traffic source.

Solution

The traffic source admits a Markovian model according to the simple chain in Figure 3.15. Let PON (POFF) denote the probability of the ON state (OFF state). State probabilities can be determined by means of a cut equilibrium and a normalization condition as stated below:
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Note that the state probability is Bernoulli distributed with PGF given by the polynomial of first degree: POFF + zPON.

Let us consider the first case. Since no traffic is produced in the OFF state, PON also denotes the activity factor of the source. The burstiness factor  is defined as the ratio between the peak bit-rate and the mean bit-rate produced by the source: 
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The traffic intensity produced by this source, , is obtained considering that T is the time to transmit one packet and that rPON is the mean packet arrival rate:
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The mean number of packets N in the transmission buffer is related to the known mean packet delay of 5T by means of the Little formula. In particular, we have: 
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In the second case, we have numerical values that can be used to compute the traffic intensity :
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With a traffic intensity of 1 Erlang the transmission buffer is unstable; therefore, it is essential to increase the transmission capacity in order to manage the data generated by this traffic source.

Ex. 5.23 We have a variable bit-rate video traffic source whose bit-rate (fluid-flow traffic model) is characterized by the continuous-time Markov chain shown in Figure 3.16 (Figure 5.26 in the book) with parameters  and  (see also Reference [21] of Chapter 5 of the book). The source can be in one of 6 states, i ( {0, 1,..., 5}. When the traffic source is in state i, the traffic is generated according to a constant bit-rate equal to iV bit/s. We have to determine: (1) the state probability distribution of the chain modulating the traffic generation as a function of  and ; (2) the mean bit-rate and the burstiness of the traffic produced by the source as a function of ,  and V; (3) the traffic intensity produced by this source if its bits are sent on a transmission line with a capacity of R bit/s.
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Figure 3-16. Markov chain modulating the bit-rate generated by the video traffic source (fluid-flow model).

Solution

The state probability distribution of the modulating Markov chain, Pi for i = 0, 1, 2, ..., 5, can be obtained by means of the classical method with cut equilibrium conditions and the normalization condition:
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The resulting state probability distribution can be expressed as shown below:
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It is easy to show that the above distribution is binomial with parameters 5 and /(+ ). This is more evident if we compute the corresponding PGF P(z):
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Since a binomial distribution is obtained as sum of Bernoulli iid random variables (see subsection 4.3.1.2 in the book), the binomially distributed state probability suggests the fact that the video traffic source can be considered as the superposition (sum) of 5 ON-OFF (Bernoulli) traffic sources, generating a bit-rate V in the ON state and not generating traffic in the OFF state: the mean rate from ON to OFF is  and the mean rate from OFF to ON is . These ON-OFF traffic sources are similar to those discussed in the previous Exercise 5.22.

The mean bit-rate R produced by the video traffic source can be obtained as:
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where N is the mean value of the state probability, which can be obtained by taking the first derivative of the related PGF:
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Hence, the mean bit-rate results as:
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The peak bit-rate produced by the video traffic source is equal to 5V bit/s. Hence, the burstiness  of this traffic source is:
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Ex. 5.24 We have to dimension the communication part of an Automatic Teller Machine (ATM) system. We know that customers arrive at the ATM machine according to a Poisson process with mean rate  (proportional to the service area). We consider that a customer is blocked and refused if the ATM machine is busy when it arrives: the customer should try again after some time. Then, the ATM machine can be modeled as a loss queuing system with a single server and no waiting part. Let us assume that the service time of a customer is according to a general distribution with mean value T. We have to study this system and determine the blocking probability PB that a generic customer experiences because the ATM machine is busy. Finally, it is requested to determine the maximum value of the customer arrival rate  to guarantee PB < 1 %.
Solution

This ATM machine admits an M/G/1/1 queuing model, since the arrival process of customers is Poisson (mean rate ) and the service time of each customer has a general distribution. We have just one place in the queue, since we consider that a newly arriving customer is refused if the ATM machine is busy when it arrives; the customer will probably return later, but this reattempt is included in the total arrival rate . 
The M/G/1/1 queuing system can be studied by means of the equivalent M/M/1/1 queue with the same input traffic intensity  = T Erlangs. The probability that a customer arrives at a busy ATM machine and is blocked, PB, can be derived by means of the Erlang-B formula (5.37) of the book, applied to the equivalent system (PASTA property) as:
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Let us impose the constraint PB = 1 % in the above PB formula so that we can derive the corresponding maximum traffic load max that the system can support:
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Ex. 5.25 Let us consider two independent traffic sources, whose traffic is at the input of a multiplexer. The two traffic sources are characterized by the following Markov-modulated fluid-flow models. 

Traffic source #1 has the model shown below: in the state ‘‘0’’ no traffic is generated, while in the state ‘‘1’’ a constant bit-rate V is generated.
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Traffic source #2 has the model shown below: in the state ‘‘0’’ no traffic is generated, while in the state ‘‘1’’ a constant bit-rate R is generated.
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It is requested to determine the bit-rate distribution of the aggregate traffic.

Solution

The state probability distribution of traffic source #1 can be obtained by the cut equilibrium condition and the normalization condition as:
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Hence, the bit-rate generated by traffic source #1 is characterized by random variable A with distribution and related PGF as follows:
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Analogously, the bit-rate generated by traffic source #2 is characterized by random variable B with distribution and related PGF as follows
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The aggregate traffic flow at the input of the multiplexer can be obtained as A + B with corresponding PGF as A(z)×B(z), since A and B are independent variables. 
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The possible bit-rate values of the aggregate traffic source are 0, R, V, and R + V. The probabilities corresponding to these values can be obtained by inverting the PGF A(z)×B(z); this is easy since this PGF is a polynomial so that these probabilities are given by the coefficients of the polynomial.

Ex. 5.26 Let us consider a Next Generation Network (NGN) supporting VoIP calls, each needing a bandwidth BWcall to guarantee an acceptable voice quality. Let BWgateway denote the capacity of the output link from the VoIP gateway. We assume that VoIP calls arrive at the gateway according to a Poisson process and have a generally distributed length. From measurements, we know the maximum arrival rate of VoIP calls at the gateway in the busy hour; this is denoted by parameter BHCA (Busy Hour Call Attempts). Still from measurements, we know the Mean Call Duration, denoted by parameter MCD. If a new call arrives at the VoIP gateway and does not find an available bandwidth equal to BWcall, it is blocked and refused by some Call Admission Control (CAC) functionality. What is the grade of service provided by the gateway to the VoIP traffic ? In particular, it is requested to analyze the blocking probability of VoIP calls due to CAC.
Solution
The gateway can be modeled as a loss queuing system of the M/G/S/S type, where S = BWgateway/BWcall. Let us consider that BHCA is measured in calls/s and that MCD is measured in s. Then, the peak traffic intensity offered to the system is  = MCD×BHCA [Erlangs]. BHCA and MCD are the classical teletraffic engineering parameters used to plan telephone networks. We study the M/G/S/S queue blocking probability by means of the equivalent M/M/S/S system with the same  and S values, so that we can adopt the Erlang-B formula  (5.37) of the book to determine the probability according to which a new call is refused:
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where S = BWgateway/BWcall   and   = MCD×BHCA [Erlangs].
Ex. 5.27 Let us consider a transmission system of a node that normally uses one transmitter; when the number of messages exceeds a certain threshold, K, a second dial-up transmitter is activated to reduce the congestion at the node. We assume that messages arrive according to a Poisson process with mean rate  and that messages have an exponentially distributed transmission time with mean rate . We have to determine the mean number of messages in the system N and the mean message delay T.

Solution

Traditionally, queuing theory considers models with a fixed number of servers. However, it makes sense to consider queuing systems with a changing number of servers depending on the queue length. To study our problem, we can use a Markov chain model where the state X represents the number of messages at the node; see Figure 3.17. In this chain, the completion rate is equal to  for states from X = 0 to X = K; instead, the completion rate is equal to 2 for states from X = K + 1. 
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Figure 3-17. Continuous-time Markov chain model.

The ergodicity condition states that the system is stable if  = / < 2 Erlangs. The state probability distribution, Pi, can be obtained by means of the classical method with cut equilibrium conditions and the normalization condition:
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Numerator and denominator of P0 are equal to 0 for  = 1 Erlang. However, this singularity is removable, so that P0 = 1/(2 + K) at  = 1 Erlang. If K ( 0, this queuing system admits the same chain model as an M/M/1 queue with service rate 2 (stability limit / < 2). If K ( 1, this system admits an M/M/2 model with service rate  (see the solution of Exercise 5.2). If K ( +( , this system admits an M/M/1 model with service rate  (stability limit / < 1).
The mean number of messages in the system can be expressed as:
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In the N expression, the singularity at  = 1 Erlang is removable. The mean message delay is obtained by means of the Little theorem as:


[image: image182.wmf]l

N

T

=


A practical example of such a system is security check at airports, where the waiting time for customers cannot exceed a certain limit to avoid being late for the departing flights. So that when the queue length exceeds a certain threshold, a second check point is activated. Further details on a more general model with a progressively increasing number of servers depending on suitable queue length thresholds can be found in Reference [R2] below.

[R2] 
N. V. V. Mazalov, A. Gurtov, “Queuing System with On-Demand Number of Servers”, Mathematica Applicanda, Vol. 40, No. 2, p. 1-12, 2012.
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4. Exercises on Chapter 6: M/G/1 Queuing Theory and Appl.
This Section contains exercises on the M/G/1 theory with some applications to the ATM technology, to Automatic ReQuest repeat (ARQ) transmissions, etc.

Ex. 6.1 We consider a transmission system with a buffer. The transmitter is used to send packets on a radio channel. We know that:

· Packets arrive in groups of messages.

· Messages arrive according to exponentially distributed interarrival times with mean value equal to Ta seconds.

· The length lm of a message in packets is according to the following distribution (memoryless from message to message):
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· The buffer has infinite capacity.

· The radio channel causes that a packet is received with errors with probability p; packet errors are memoryless from packet to packet.

· An ARQ scheme is adopted.

· Round-trip propagation delays to receive ACKs are negligible with respect to the deterministic packet transmission time, T.

· A packet remains in the buffer until its ACK is received.

We have to determine the mean number of packets in the buffer and the mean delay that a packet experiences from its arrival at the buffer to its last (and successful) transmission.
Solution

This transmission system can be described as shown in Figure 4.1.
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Figure 4-1. Transmission system with ARQ scheme.

On the basis of the previous assumptions, messages arrive according to a Poisson process with mean rate  = 1/Ta [msgs/s]; each message contains a number of packets with modified geometric distribution with parameter q; each packet requires a geometrically distributed number of attempts (with parameter 1 p) to be transmitted. Each transmission attempt has duration T. This system can be studied by means of an M/G/1 model. We imbed the chain at the instants of successful packet transmission (i.e., end of transmission without error) in order to determine the mean number of packets in the buffer; we adopt here the same approximation made in Section 6.8.2 of the book because of the bulk arrival process. Therefore, we can use (6.10) to express the PGF of the number of packets in the system; in this formula, A(z) denotes the PGF of the number of packets arrived in the time required to successfully transmit one packet, Ts. In the derivation of A(z), three random variables need to be taken into account:

1. Number of messages arrived in T;

2. Number of packets conveyed by each message;

3. Time necessary to successfully transmit each packet by means of the ARQ scheme (we neglect round-trip propagation delays).

Let L(z) denote the PGF of the message length in packets:
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According to the ARQ scheme and the negligible round-trip propagation delays, an erroneously received packet is immediately retransmitted. In these circumstances, all classical ARQ schemes (i.e., Stop and Wait, Go-Back-N, and Selective Repeat) are equivalent. The PGF of the time Ts (T units) to successfully transmit one packet is:
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The number of messages arrived in T is according to a Poisson process with PGF M(z | T):
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The number of packets arrived in T is a random variable given by the composition of the number of messages and the number of packets per message; the corresponding PGF is A(z | T) obtained as:
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Hence, the number of packets arrived in the time to successfully transmit one packet is due to the composition of three random variables and has the following PGF A(z):
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According to the classical M/G/1 theory, the mean number of packets in the buffer Np is given by (6.16) of the book:
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where the derivatives of A(z) computed at z = 1 can be obtained as follows (see also the derivatives of the modified geometric distribution as shown in the solution of Exercise 4.8):
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The buffer stability is assured if A'(z = 1) < 1 Erlang ( T/[q(1 p)] < 1 Erlang. The mean system delay experienced by a packet can be obtained by employing the Little theorem, being L'(z = 1) = /q the mean arrival rate of packets per second:
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Note that if we like to determine the mean message delay, we could imbed the system at the end of the message transmission, thus applying a classical M/G/1 model and the PollaczekKhinchin formula, where the distribution of the message service time is the composition of the modified geometric distribution of the message length in packets and the modified geometric distribution of the time to successfully transmit one packet. As shown in subsection 4.3.1.2 of the book, this random variable has still a modified geometric distribution with parameter q×(1 p). Hence, the mean message service time is E[X] = T/[q(1 p)] and the mean square value of the message service time is E[X2] = 2T2[1 q(1 p)]/[q(1 p)]2 + T2/[q(1 p)]. In conclusion, the mean message delay Tm results as:
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Ex. 6.2 Messages arrive at a node of a telecommunication network to be transmitted on an output line. From measurements, we know that the arrival process and the service process are characterized as follows:

· Interarrival times ( are distributed so that E[(2] ( 2E[(]2.

· The message service time, , has a distribution so that E[2] ( E[]2.

A suitable queuing model should be envisaged for this system in order to determine the mean delay experienced by a message to cross the node.

Solution

Interarrival times have a mean square value and a mean value that fulfill the typical relation of an exponential distribution with mean rate 1/E[(]. Hence, we can assume that the message arrival process is Poisson. Instead, the message service time has a mean square value and a mean value that fulfill the typical relation of a deterministic distribution. Therefore, we can study the node of the telecommunication network according to the M/D/1 theory by imbedding the chain at the instants of message transmission completion. On the basis of (6.20) of the book, we can express the mean number of messages Nm in the node as:
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where  = 1/E[(] and x = . System stability is assured if x =/E[(] < 1 Erlang.

The mean message delay is derived directly from the Little theorem as:
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Ex. 6.3 We consider a Time Division Multiplexing (TDM) transmission line with a buffer receiving a regulated input traffic from U sources. The TDM slot duration coincides with the packet transmission time. The regulation of each traffic source operates as follows: (1) a source generates one packet in a slot with probability g; (2) a source generating one packet does not generate further packets until the previous one has been transmitted. Considering a generic number n of packets in the buffer, the packet arrival process on a slot basis is characterized by the following conditional probability:
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for n ( {0, 1, 2, …, U} and for  l  ( {0, …, U  n}.
It is requested to model this system in the case U = 2 and to derive the mean number of packets in the buffer as a function of g.

Solution

We model this system by means of a queue. In this case, the arrival process depends on the state n, which represents the number of packets in the buffer. We adopt the theory developed in Section 6.5 of the book. We imbed the chain at the end of the slots of the output TDM transmission line. Let ni denote the number of packets at the end of the i-th slot; let ai+1|ni denote the number of arrivals during the (i + 1)-th slot conditioned on the state ni. Therefore, we can write the following difference equation:
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where in the case ni = 0 we make the assumption that one packet must be completely received on a slot before its transmission can start (store-and-forward model, as considered in Section 6.6 of the book; the only difference here is that the arrival process is state-dependent).

Since the arrivals depend on the state in the difference equation, we adopt a graphical representation of the chain for the case U = 2: we have two sources and, at most two packets can be generated on a slot. In particular:

· In the state n = 0, we may have no arrivals, one arrival, or two arrivals;

· In the state n = 1, we may have no arrivals or one arrival (we cannot have two arrivals, since the regulation of traffic sources stops the generation of one further packet for the source waiting for the transmission of one packet);

· In the state n = 2, we cannot have new arrivals because of the traffic regulation imposed to the sources.

The above arrival process is well represented by the transition probabilities Prob{an = l} defined in the text of the exercise. The resulting graphical representation of the chain is shown in Figure 4.2.
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Figure 4-2. State diagram that models our system.

The state probability distribution can be obtained by stating the flow equilibrium conditions for the cuts shown in Figure 4.2 and by using the normalization condition. In particular, we have:
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 Through some algebraic manipulations, we obtain:
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Finally, the mean number of packets in the system is obtained as Np = P1 + 2P2. The model considered in this exercise is somewhat similar to the Markov model described in Section 7.2.4 of the book for the Slotted-Aloha protocol (case with U = M = 2 users).
Ex. 6.4 We have a buffer of a transmission line that receives messages coming from two independent processes:

· First traffic: Poisson message arrival process with mean rate  and exponentially distributed service time with mean rate 1;

· Second traffic: Poisson message arrival process with mean rate  and exponentially distributed service time with mean rate 2.

Assuming 1 ( 2, we have to determine the mean delay from message arrival at the buffer (from one of the two input processes) to message transmission completion.
Solution

The first and the second arrival processes are at the input of the buffer. Since they are independent Poisson processes their sum is still Poisson with mean rate 1 + 2. The probability density function of the service time, f(t), is not exponentially distributed; it can be derived as weighted sum of the probability density functions of the two different input flows:
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This is an hyper-exponential distribution; see subsection 4.2.5.5 of the book. Note that 1/(1 + 2) is the probability that one arrival is of the first traffic type; instead, 2/(1 + 2) is the probability that one arrival is of the second traffic type.

Therefore, we model the buffer by means of an M/G/1 queue. We imbed the chain at the instants of message transmission completion. The mean message delay T can be derived according to the PollaczekKhinchin formula  XE "Queuing system: Pollaczek-Khinchin formula " (6.18) of the book as:
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where E[X] and E[X2] are the moments of the distribution with density f(t). They can be derived knowing that an exponential distribution with mean rate  has mean value 1/ and mean square value 2/2:
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The buffer is stable if (1 + 2)E[X] = 1/1 + 2/2 < 1 Erlang. Note that the traffic intensities of the two (independent) flows are added together to determine the total intensity.
Ex. 6.5 Let us consider a traffic source that generates ATM cells according to a Poisson arrival process with mean rate  arrivals/s. This traffic is controlled by a leaky bucket regulator, allowing cells to be transmitted at a rate of 1 cell every Tc s. It is requested to model this system and to determine the following quantities: the probability that an arriving cell finds an empty leaky bucket and the mean waiting time experienced by an ATM cell in the leaky bucket regulator before starting its transmission.
Solution

The leaky bucket regulator can be considered as a buffer with a transmission capacity of 1/Tc cells/s. Since cells arrive according to a Poisson process, our system admits an M/D/1 queuing model. We imbed the chain at the instants of cell transmission completion. Hence, we adopt the classical M/G/1 theory and we use A(z), which corresponds to the PGF of the number of ATM cells arrived during the service time of a cell. Since the service time of a cell is equal to Tc and the cell arrival process is Poisson with mean rate , we have:
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According to (6.4) and (6.14) of the book, we know that the probability of an empty regulator is P0 = 1 – A'(z = 1) = 1 – Tc. On the basis of the PASTA property of the Poisson arrival processes, we have that P0 is also the probability that a newly arriving cell finds an empty regulator so that it is served (= transmitted) immediately. The stability of the regulator is assured if P0 > 0 or equivalently if Tc < 1 Erlang.

On the basis of the waiting term in (6.18) of the book, we can express the waiting time, W, experienced by a cell arriving at the regulator as follows:
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where in our case with deterministic service time, E[X] = Tc and E[X2] = Tc2.

Ex. 6.6 We consider the transmission system outlined in Figure 4.3 (Figure 6.10 in the book) where we have N input traffic flows (each characterized by an independent Poisson arrival process of packets with mean rate ), which correspond to distinct buffers served by a shared transmission line. Let  denote the packet transmission time.
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Figure 4-3. Transmission system on a shared line.

The transmission line serves the different buffers cyclically: it transmits a packet from a buffer (if it is not empty) and then switches instantaneously to service the next buffer according to a fixed service cycle
. We have to determine the mean delay experienced by a packet from its arrival at the system to its departure. 

Solution

Since the server (i.e., the transmission line) switches instantaneously from a buffer to the next one, we can model the entire system as a single equivalent queue with a specific service discipline for the packets. The arrival process at this queue is the sum of N independent Poisson arrival processes; hence, it is still Poisson with mean rate N. The transmission time of a packet is deterministic and equal to . Therefore, the equivalent queue admits an M/D/1 model: we use the M/G/1 theory to determine the mean delay experienced by a packet, since it does not depend on the particular service discipline (see the insensitivity property in Section 5.5 of the book). We imbed the queue at the instants of transmission completion of packets and we adopt equation (6.18) -PollaczekKhinchin formula- to express the mean packet delay T as:
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This system is stable if N < 1 Erlang.

Note that the if the switching times from one queue to another are not negligible, the model to be adopted is M/G/1 with vacations (non work-conserving case) and the above M/G/1 mean delay has to be corrected with an additional term to take the switching times into account, as explained in Section 7.3.3 of the book. In this case, the mean packet delay depends on the service discipline adopted (i.e., the type of RR service adopted: gated, exhaustive, or limited).
Ex. 6.7 An ATM multiplexer receives traffic from two Time Division Multiplexing (TDM) input lines (line A and line B) and has a single TDM output line as shown in Figure 4.4 (Figure 6.11 in the book).
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Figure 4-4. ATM multiplexer with two input lines and one output line.

Let us assume:

· The time slot, Tc, of all TDM lines can convey one ATM cell.

· Input and output TDM lines are synchronized.

· The number of cells nA arrived from line A at the multiplexer in Tc is according to a Poisson distribution with mean value Tc.

· The number of cells nB arrived from line B at the multiplexer in Tc is according to the following distribution:
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· Both arrival processes from the two input lines are discrete-time, independent, and memoryless from slot to slot.

We have to determine: (1) the stability condition for the buffer of the ATM multiplexer; (2) the mean number of ATM cells in the buffer; (3) the mean cell delay from the arrival of a cell at the multiplexer (from one of the two input lines) to its transmission on the output line.
Solution

The multiplexer is a queuing system with two synchronous input processes. The system can be modeled as shown in Figure 4.5.
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Figure 4-5. Queuing model for the ATM multiplexer.

We study this system at the end of the slots of the output line (imbedding instants). Let ni denote the number of ATM cells in the buffer at the end of the i-th slot. Let ai denote the number of ATM cells arrived from the two input lines in the buffer during the i-th slot. Adopting the same approach as in Section 6.6 of the book, we can write the following balance: ni+1 = ni1 + ai+1 for ni  > 0 and ni+1 = ai+1 for ni = 0. This balance corresponds to equation (6.1) of the book, derived for a classical M/G/1 queue. The arrival process term ai+1 is the sum of the contributions coming from the two input lines. Since the arrival process ai+1 is independent of the number of cells in the buffer, ni, we can derive the mean number of cells in the buffer Nc by means of formula (6.16) of the book:
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where A(z) is the PGF of the number of ATM cells arrived at the buffer in a time slot from the two input lines. A(z) can be derived as follows. We refer to the arrivals of cells coming from line A and we obtain the PGF A(z | A) by considering that it is related to the number of arrivals of a Poisson process in a time Tc:
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We refer to the arrivals of cells coming from line B and we obtain the PGF A(z | B) by considering that it is related to a geometrically distributed number of arrivals in a time Tc:
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Since the arrivals from A and B are independent variables summed by the multiplexer, the PGF A(z) is given by the product A(z | A)(A(z | B):
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In order to obtain Nc we need to compute the first two derivatives of A(z) at z = 1:
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where it is easy to show that (see also subsections 4.2.5.2 and 4.3.1.2 of the book):
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The buffer stability is assured if A'(z = 1) < 1 Erlang, that is 
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Note that A'(z = 1) denotes the mean number of cells arrived at the multiplexer in a time slot. Hence, the mean cell delay T is obtained by applying the Little theorem to Nc by means of the mean number of cells arrived per slot, A'(1), as:
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Ex. 6.8 We refer to a leaky bucket regulator that ‘‘filters’’ the ATM cells generated by a traffic source. This regulator can send a cell every time T. We have a Time Division Multiplexing (TDM) line at input and output of the regulator. These lines are synchronous with slot duration T. The cell arrival process (input line) is characterized as follows:

· A slot carries a message with probability q; otherwise it is empty.

· Each message is composed of a random number of cells with PGF L(z); note that a message has a maximum length of Lmax cells.

It is requested to evaluate the following quantities:

· The mean delay experienced by a cell from input to output of the regulator;

· The burstiness of the output traffic to be compared with that of the input traffic.
Solution

The leaky bucket regulator can at most allow the transmission of one cell every time T. Even if the input process is not Poisson (but compound Bernoulli), we can still apply the classical M/G/1 solution method (in the most general case denoted in the book as ‘‘M’’/G/1) for the analysis of this leaky bucket regulator: the assumptions made in Section 6.1 of the book are met. In particular, we imbed our study at the instants of slot ends of the output TDM line (see Section 6.6 of the book). Let ni denote the number of cells in the regulator at the end of the output i-th slot; let ai denote the number of cells arrived at the regulator during the i-th (output) slot. With these definitions we may note that we can use the difference equation (6.1) of the book. We have to determine A(z), which is the PGF of the number of cells arrived at the regulator in a slot. Input and output slots are synchronized. Note that the cell arrival process is compound Bernoulli because a message arrival carries multiple cells. Therefore, ai corresponds to PGF L(z) with probability q and corresponds to PGF z0 with probability 1 q; we remove the conditioning as follows:
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Correspondingly, A'(z = 1) = qL'(z = 1) and A''(z = 1) = qL''(z = 1).

The queue stability is assured if A'(z = 1) = qL'(z = 1) < 1 [cells/slot]. The mean number of cells Nc can be derived from (6.16) of the book as:
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The mean cell delay Tc is obtained by applying the Little theorem with a mean cell arrival rate equal to A'(z = 1) = qL'(z = 1) [cells/slot]:
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Finally, we study the effects on the traffic burstiness due to the leaky bucket regulator. We compare input and output traffic burstiness. Note that traffic burstiness ( is defined as the ratio between peak cell rate and mean cell rate.

Derivation of input traffic burstiness (in: the peak cell rate is equal to Lmax/T; the mean cell rate is given by qL'(z = 1)/T, since on average A'(z = 1) = qL'(z = 1) cells are generated in a slot. Hence, (in = Lmax/[qL'(z = 1)].

Derivation of output traffic burstiness (out: the peak cell rate is equal to 1/T, according to the definition of the regulator; instead, the mean cell rate is obtained by considering that the output cell rate is equal to 1/T when the regulator is non-empty [with probability 1 P0 = A'(z = 1)] and is equal to 0, otherwise. Consequently:
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Comparing (in and (out, we notice that (in = Lmax×(out. Hence, we can conclude that the leaky bucket regulator reduces the burstiness of the input traffic by a factor of Lmax.
Ex. 6.9 We have a transmission buffer where messages arrive according to a Poisson process (mean rate  and have a general service time distribution with pdf g(t). We need to characterize the message service completion process for this M/G/1 system.
Solution

We study the completion process in terms of time intervals between subsequent service completion events. Let (s) denote the Laplace transform of the probability density function of the time intervals between service completion instants. We determine (s) by considering two cases: (1) non-empty queue; (2) empty queue.

· Derivation of (s | non-empty queue): In this case, intervals between completion events have a probability density function g(t) with Laplace transform (s): (s | non-empty queue) ( (s).

· Derivation of (s | empty queue): in this case, we have to wait for the next arrival, characterized by an exponentially distributed waiting time with mean rate  and Laplace transform /( + s). Hence, the time interval for the next completion event is the sum of two independent contributions: an interarrival time and a service time. In the Laplace domain we have that (s | empty queue) is given by the product of two contributions: (s | empty queue) ( [/(+ s)]((s).

We remove the conditioning in (s | queue) by means of the probability of an empty and of a non-empty M/G/1 queue, P0 and 1 – P0, respectively. According to (6.4) and (6.5) of the book, P0 = 1 E[X], where E[X] is the mean value of the probability density function g(t). In conclusion, we have:
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If g(t) is exponentially distributed [e.g., (s) =/( + s), E[X] = 1/], we can prove that (s) (/(+ s), the Laplace transform of an exponential distribution with mean rate : the output process is still Poisson with mean rate . This is the important result of the Burke theorem, as shown in Section 8.2 of the book.

Ex. 6.10 Let us consider an ATM multiplexer receiving an input traffic due to many elementary contributions. Cells arrive at the multiplexer according to a Poisson process with mean rate . An output Time Division Multiplexing (TDM) line is used: a cell is transmitted in a slot of duration T. It is requested to determine the mean number of cells in the buffer and the mean delay experienced by a cell from its arrival at the buffer to its transmission completion.
Solution

In this exercise, the input arrival process is not synchronized with the slots of the output transmission line. For instance, if there is one arrival at an empty multiplexer, its transmission can only start at the beginning of the next output slot; hence, this cell experiences an additional waiting time due to the transmission synchronism. This synchronization delay is not present for cells arriving at a non-empty multiplexer. These different service behaviors for cells arriving at empty or non-empty multiplexer suggest the adoption of the M/G/1 theory with differentiated service times, as described in Section 6.10 of the book. We imbed the chain at the instants of cell transmission completion. Let ni denote the number of cells in the multiplexer at the completion instant of the i-th request. Let ai (or ai*) denote the number of cells arrived at the multiplexer during the service time of the i-th request arrived at a non-empty (or at an empty) system. We can write the following difference equations describing the behavior of the system:

· ni+1 = ni – 1 + ai+1, if ni ( 0, 

· ni+1 = ai+1* , if ni = 0.

These are the same difference equations described in Section 6.10, which are solved in (6.77) of the book, where we need to determine A(z) and A*(z), the PGF of the number of arrivals during a ‘‘normal service time’’ of a cell (i.e., a time slot T) and the PGF of the number of arrivals during a ‘‘differentiated service time’’ of a cell (i.e., a time slot T plus a time ( because of the wait for the right synchronism), respectively.

A(z) can be easily derived since it is the PGF of the number of Poisson arrivals with rate  in a fixed time T:
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A*(z) is the PGF of a variable a* that is the sum of Poisson arrivals in the fixed time T, a, and in a random synchronization time , w: a* = a + w. Since Poisson arrivals in distinct intervals are statistically independent, random variables a and w are independent, so that A*(z) can be obtained by means of the following product:
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where W(z) is the PGF of w, the number of cell arrivals in the random synchronization time  due to the Poisson process.
W(z) can be derived on the basis of the pdf of , f(t), according to the following approach:
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Therefore, we have to determine f(t). Note that  is related to a generic arrival occurring at random in an interval of duration T:  is the remaining time before the end of this interval T. This situation is depicted in the following Figure 4.6, where we consider that the arrival at an empty buffer occurs at instant t0.
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Figure 4-6. Description of random variable  T t0.

Instant t0 will be in a given slot, which starts at instant t = 0 for the sake of simplicity. The distribution of time t0 does not depend on how many previous slots have been spent with an empty system (memoryless assumption applied to the exponential distribution of the Poisson interarrival times). Hence, the PDF of t0 can be expressed in general as:
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We have that  T t0. We may derive the PDF of , F(t), as follows:
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Finally, the pdf of , f(t), is obtained as:
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Note that the expected value of  is:
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On the basis of f(t), we can express the PGF W(z) as:
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Since we know A(z) and A*(z), we can obtain the mean number of cells in the multiplexer by means of equation (6.77), which can be rewritten as:
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where we can express the derivatives of A*(z) = A(z)W(z) and A(z) as:
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Moreover, it is easy to obtain the following expressions for the derivatives of W(z) computed at z = 1:
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By means of the above expressions of the derivatives we can manipulate the N result as:
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Note that in the above expression of N, the first term is related to the request served, the second term is due to the synchronization delay experienced by the arrivals at an empty system, and the last term is due to the waiting list. The first term and the last one are those of the classical M/G/1 theory in (6.17) of the book. 
The system stability condition is A'(1) = T < 1 Erlang. 

The mean cell delay Tc can be obtained by means of the Little theorem as:


[image: image237.wmf](

)

(

)

(

)

(

)

[

]

(

)

(

)

[

]

[

]

[

]

[

]

s

T

T

T

T

A

A

W

W

W

A

N

T

c

l

l

l

l

l

l

-

+

+

=

=

-

+

+

+

+

=

=

1

2

2

1

'

1

2

1

'

'

1

'

1

2

1

'

'

1

'

2

1

'

2


The synchronized transmission entails an additional contribution to the mean delay, which corresponds to half of the time slot. 

Note that this system can also be studied as an M/G/1 system with vacations, where the vacation time is coincident with the time slot. In particular, the mean cell delay can be obtained by means of the classical PollaczekKhinchin formula XE "Queuing system: Pollaczek-Khinchin formula "  plus an additional (mean) delay term given by E[T02]/{2×E[T0]}, where T0 is in general a random variable modeling the vacation time. In our simple case, T0 is constant and equal to T (time slot), so that E[T02]/{2×E[T0]} = T/2, as already obtained above. The interested reader may refer to the literature on vacation time for more details.

Ex. 6.11 Let us consider an ATM multiplexer receiving input traffic from N synchronous Time Division Multiplexing (TDM) lines. Each input slot has a duration T and may convey an ATM cell with probability p, uncorrelated from slot to slot and from line to line. At the output of the ATM multiplexer we consider two TDM synchronous lines, each requiring a time T to transmit a cell. We have to model this system and determine the probability generating function of the number of cells in the ATM multiplexer.
Solution

This system admits a model of the ‘‘M’’/D/2 type, analogous to the ‘‘M’’/D[2]/1 queue analyzed in Section 6.11 of the book. We study this system by imbedding the chain at the instants of slot ends of output lines (see Section 6.6 of the book). Let ni denote the number of ATM cells in the multiplexer at the end of the i-th slot; let ai denote the number of ATM cells arrived at the multiplexer during the i-th slot from the N input lines. We can write the following difference equations:
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Hence, we have obtained the same difference equations as in (6.79) of Section 6.11 in the book. The same approach and numerical results can be used here. In particular, the PGF of the number of cells in the buffer is:
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where the zero-pole cancellation inside the unit circle (and the normalization condition) allow us to achieve the following result for P0 and P1:
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where z1 is the root of equation z2 A(z) = 0 with |z1| ( 1, z1 ( 1 (Rouché theorem) and where
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  .
Note that a numerical method has to be used to solve z2 A(z) = 0 if N > 4.
Ex. 6.12 We have an ATM traffic source, which injects cells into the network according to a token bucket regulator. ATM cells arrive at the buffer of the regulator according to a Poisson process with mean interarrival times equal to T. The effect of the regulator on the transmission of the cells is modeled as follows: an ATM cell arriving at the head of the buffer finds an available token for its immediate transmission with probability p; otherwise (i.e., with probability 1 p), the cell has to wait for a token according to an exponentially distributed time with mean rate . For the sake of simplicity, we neglect the transmission time for a cell that has received its token. We have to evaluate the mean delay experienced by a cell to be injected into the network.
Solution

The ATM traffic source with the regulator can be modeled as described in Figure 4.7.
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Figure 4-7. Regulator for an ATM traffic source based on the token-bucket scheme.

Since the cell transmission time is negligible, the injection of cells into the network is regulated by the availability or not of tokens in the bucket. Hence, a cell arriving at the head of the buffer of the regulator has a service time Ts due to the waiting time for the token. The pdf of Ts can be expressed as follows:
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where (t) denotes the Dirac Delta function centered at the origin, meaning that the service is instantaneous when an arriving cell immediately finds an available token (with probability p).

Since the cell arrival process at the regulator is Poisson with mean arrival rate  = 1/T, the regulator can be modeled as an M/G/1 queuing system. The mean cell delay imposed by the regulator, Tc, can be obtained directly from the well-known PollaczekKhinchin formula (6.18) by imbedding the system at the cell transmission completion instants:
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where from the above pdf of Ts we have:


[image: image245.wmf][

]

(

)

[

]

(

)

2

2

2

1

and

1

1

m

m

´

-

=

´

-

=

p

T

E

p

T

E

s

s


The stability condition for the buffer of the regulator is: E[Ts] < 1 Erlang  (  (1 p)/ < 1 Erlang.

Ex. 6.13 We consider the data traffic flow generated by a given user (host); this flow first crosses an IP-layer queue and then a MAC-layer (tandem) queue. IP packets arriving at the layer 2 queue are fragmented in order to generate fixed-length layer 2 packets (padding is used), whose transmission time is . The length of an IP packet in layer 2 (MAC) packets is modeled by means of a random variable with modified geometric distribution and mean value L. Let us assume that the arrival process of IP packets at the layer 2 queue is Poisson with mean interarrival time T. It is requested to determine the mean delay experienced by a layer 2 packet from the arrival instant at the layer 2 queue to its complete transmission.
Solution

This exercise proposes to study in a simplified traffic scenario, the exchange of traffic within a host from layer 3 to layer 2. The resulting packet arrival process at the MAC queue is a compound Poisson process, where the number M of packets per arrival is geometrically distributed as:
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where k = 1, 2, …. and where q = 1/L.

The corresponding PGF is M(z) as:
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where M((1) = 1/q  and  M(((1) = 2(1 q)/q2.

The MAC layer queue admits a model of the M[Geom]/D/1 type, which can be solved by imbedding the system at the end of packet transmission time. Let ni denote the number of packets at the i-th imbedding instant; let ai denote the number of packets arrived at the queue during the service time of the i-th MAC layer packet. For the sake of simplicity, we neglect the arrival of multiple MAC layer packets at an empty buffer, as shown in Section 6.9.1 of the book. Hence, we can write the following classical difference equations:

· ni+1 = ni – 1 + ai+1, if ni ( 0, 

· ni+1 = ai+1 , if ni = 0 (approximate case).

These equations can be solved to determine the mean number of packets Np in the MAC layer queue according to (6.16) of the book:
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where A(z) denotes the PGF of the number of packets arrived in a time  due to the compound Poisson process: A(z)= e[M(z) 1]. Hence, we have the following derivatives:


[image: image249.wmf](

)

(

)

(

)

[

]

(

)

2

2

2

1

2

1

'

1

'

'

)

1

(

'

'

,

1

'

)

1

(

'

÷

÷

ø

ö

ç

ç

è

æ

+

-

=

+

=

=

=

q

q

q

M

M

A

q

M

A

lt

lt

lt

lt

lt

lt




Queue stability is assured by imposing /q < 1 Erlang.

Finally, we obtain the mean packet delay Tp dividing Np by the mean packet arrival rate [i.e., M'(1) = /q] according to the Little theorem:
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Ex. 6.14 Let us consider a queuing system of the ‘‘M’’/G/1 type modeling a transmission buffer. Referring to imbedding points at service completion instants, the queue is characterized by the classical difference equation: ni+1 = ni  I(ni) + ai+1. We know that ai is independent of ni and that the arrival process is memoryless. We have to verify whether the following probability generating function of random variable ai, 

A(z) = [1 + (c 1)z]/c     (where c > 1 is a constant),

allows an empty waiting list in the buffer (i.e., a request arriving at the system is served immediately).
Solution

The difference equation modeling the queuing system of this exercise can be solved in the z domain, thus yielding the classical PGF P(z) of the state probability distribution as in formula (6.10) of the book. Then, we can complete the proof requested by this exercise both in a simplified way and in a more formal way. 

Let us examine first the simplified (heuristic) approach. The mean number of requests in the queue according to (6.16) of the book is:
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A necessary condition in order not to have a waiting part in the queue is to have A''(1) ( 0, so that N ≡ A'(1). Since A(z) = [1 + (c 1)z]/c, we can easily see that A''(1) ( 0 in our case. Actually, we have shown that on average there are no requests waiting for service in the queue. Since the number of requests waiting for service in the queue is for sure a non-negative value, having proved that its average value is zero allows us to automatically state that the random variable itself is zero. Hence, there is no waiting list in this system at imbedding instants.

In a more formal proof, we can operate on the P(z) expression (6.10) and substitute the expression given for A(z); we obtain, P(z) ≡ A(z) and A(z) is a polynomial of the first degree so that there is either no request in the system or a single request (in service). However, with the general assumptions of this exercise we can just demonstrate that there is no waiting list at imbedding instants; we should be able to apply the Kleinrock principle and the PASTA or BASTA property in order to generalize the validity of the proof at any instant, as in the extension of the exercise below.
Let us consider the case that our system is discrete-time with a slotted arrival process and a slotted service type; input and output slots have the same length and are synchronized. The arrival process [modeled by PGF A(z)] is of packets that require a time slot to be transmitted. Following the assumption of the exercise, imbedding instants are at the end of the transmission of a packet. Let us notice that A(z) is the PGF of a Bernoulli process representing the number of packet arrivals on a slot basis: one arrival with probability (c 1)/c and no arrival with probability 1/c. According to the previous proof, we know that there cannot be a waiting part at imbedding instants with the given A(z) expression. Moreover, we can now apply the Kleinrock principle and the BASTA property to extend at any time the validity of the results obtained at imbedding instants. Hence, there is no waiting part at any time.

However, referring to the difference equation in the case ni = 0, we could apparently have some waiting time for those requests, which arrive during the service time of the request arrived at an empty buffer, as shown in the Figure 4.8. This apparent inconsistency suggested by Figure 4.8 can be explained considering that the arrival process is discrete-time so that the new arrival (if any) in the interval [2T, 3T] will be actually completed at the time 3T when this new packet will enter the service: also this packet does not experience any wait. 
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Figure 4-8. Arrival at an empty buffer.

Ex. 6.15 We have to investigate a queuing system with feedback as follows: (1) message arrivals occur according to a Poisson process with mean rate ; (2) the service time of a message is exponentially distributed with mean rate ; (3) when the service of a message completes, the message can be fed back to the queue with probability p and definitely leaves the system with probability 1 – p; (4) a given message always has the same service length every time it crosses the queue. We are requested to determine the mean delay experienced by a message from its first arrival at the system to the instant when it leaves the system definitively. Here, we have to solve this exercise by applying the M/G/1 theory. However, this exercise can also be solved (with some approximation) by means of the Jackson theorem, as shown in Chapter 8.
Solution

This queuing system can be represented as depicted in Figure 4.9:
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Figure 4-9. Queue with random feedback.

Suitable analytical methods are presented in Chapter 8 to deal with network of queues under certain hypotheses. Here, we would like to study this system without using those methods and special hypotheses (like the Kleinrock assumption), but just using the M/G/1 theory. With the feedback scheme envisaged, the same message crosses the queue N times before leaving the system. All these times, the message service time X is the same, derived from an exponential distribution with mean rate . If a message is fed back to the queue after its service completion, we can consider as if it was again placed at the head of the queue, since this does not alter the mean message delay: under the insensitivity property, different service disciplines yield the same mean message delay. Hence, following this reasoning, it is as if one message had an equivalent service time (because of the feedback effects) Y = N × X, where N and X are independent random variables. Note that N has a geometric modified distribution with parameter 1 – p. We can thus imbed the study at the instants when the message definitively leaves the system. We obtain a classical M/G/1 queue (service time is Y), which can be solved by means of the PollaczekKinchin formula (6.18) of the book:
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where, substituting the following expressions E[Y] = E[N] × E[X] = 1/[(1 – p)] and E[Y2] = E[N2] × E[X2] = 2(1 + p)/[(1 – p)2], we have:
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Note that the above E[Y] and E[Y2] expressions are valid if N and X are independent variables.
If for some reason the message service time was regenerated at each new pass through the queue (service time Xi at the i-th pass through the queue), as envisaged by the Kleinrock assumption made in Chapter 8 to study networks of queues, the total message service time Y (still considering N passes through the queue and still considering that when a message is fed back it is placed at the head of the queue) would result as:
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In this case, Y is given by the composition of an exponential distribution and a modified geometric one. Following the same reasoning provided in subsection 4.3.2.2 of the book, we can demonstrate that Y is exponentially distributed with mean rate (1 – p). Hence, we have obtained a classical M/M/1 queue for which the mean delay is expressed according to equation (5.24) of the book as:
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We can see that this mean message delay (under the Kleinrock assumption of regeneration of the message service time at each round) is different from (lower than) that obtained assuming that the message keeps the same service time for the different passes through the queue. However, in both cases the same stability limit is achieved: 
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In Chapter 8 (Section 8.3.1) of the book, another (approximate) approach is provided in order to solve this problem on the basis of the Jackson theorem under the Kleinrock assumption; in this way, we could obtain the same result as in the second case above. We have thus verified that the method in Section 8.3.1 is approximated; instead, the solution obtained by the first method above is the exact one.
Ex. 6.16 Let us consider a node of an ATM network where cells arrive from an input TDM line with slot duration equal to T. The slot-based packet arrival process is described by a random interarrival time ta with the following distribution: Prob{ta = k slots} = q(1 q)k. When an ATM cell arrives at the node, it is routed internally to the node either towards queue #1 with probability p or towards queue #2 with probability 1 p. Queue #1 has a slotted service process with slot length equal to T (as the input slot). Queue #2 has a slotted service process with slot length equal to 2T (twice the input slot length). The model of the node is described in Figure 4.10 (Figure 6.12 in the book). It is requested to determine: the mean cell delay T1 that a cell experiences to cross queue #1, the mean cell delay T2 that a cell experiences to cross queue #2, and the total mean cell delay T from node input to output.
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Figure 4-10. Model of the ATM node considered. Input and output slots are synchronized.
Solution
Since interarrival times are geometrically distributed, the input process is Bernoulli: an input slot con contain a cell with probability q and is empty with probability 1 q; this behavior is memoryless from slot to slot. Then, each input slot to queue #1 can carry a cell with probability q×p (Bernoulli process); similarly, each input slot to queue #2 can carry a cell with probability q×(1 p) (Bernoulli process).
In order to study queue #1, we imbed the system at the end of the output slots from queue #1. Let ni denote the number of cells in queue #1 at the end of the i-th slot and let ai denote the number of cells arrived at queue #1 during the i-th slot. We can thus write the classical ‘‘M’’/G/1 difference equation (6.1). Let A1(z) denote the PGF of random variable ai at regime. We can express the mean cell delay T1 for queue #1 as follows:
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where A1(z) = pqz + 1 pq. The stability of queue #1 is assured if A1'(1) = pq < 1 pkts/slot1. In this special case, since A1''(1) = 0 (no waiting part for queue #1), T1 ( 1 [slot unit1].
In a similar way, we can express the mean delay T2 experienced by cells arriving at queue #2 as follows:
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where A2(z) is the PGF of the number of cell arrivals at queue #2 on an output time slot that is twice the input slot. Then, we have to sum the arrivals of two adjacent input slots. Since these arrivals are independent, in the z-domain we have the product of two equal PGFs as follows:
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.
Since the slot units of output line #2 are twice the slot units of output line #1, in order to compare T1 and T2 we have to multiply T2 by 2 and we denote by T2* this new value:
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where A2'(1) = 2q(1 p) and A2''(1) = 2q2(1 p)2.

The stability of queue #2 is assured if A2'(1) = 2q(1 p) < 1 pkts/slot2.
In order to conclude this exercise, we have to derive the total mean cell delay T considering that an arriving cell is managed by queue #1 with probability p and is managed by queue #2 with probability 1 p:


[image: image264.wmf](

)

[

]

1

*

2

1

units

slot 

1

T

p

pT

T

-

+

=


However, we need to make further considerations in order to apply the above formula. T1 and T2* results have been obtained at different imbedding instants; hence, in general, they could not be comparable. However, since the BASTA property and the Kleinrock principle can be applied to each queue, we have that the mean delay results are valid not only at imbedding instants, but also at any time so that T1 and T2* are homogeneous results and can be combined to determine T. Note that the Kleinrock principle can still be applied to queue #2, because looking at the actual variations in time in the number of cells in this queue we have that this state can only change each time of +1 or 1 packet.
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5. Exercises on Chapter 7: Local Area Networks Analysis

The following exercises exploit the characteristics of arrival processes and queuing theory to study the behavior of access protocols. 

Ex. 7.1 Let us consider an access system where terminals spread over a certain area transmit packets (duration T s) on a radio channel to a remote central controller. Transmissions are at random, but can only start at synchronization instants (i.e., slots). New packets arrive according to exponentially distributed interarrival times with mean value 1/ s. When a terminal transmits a packet we have that:

· With probability 1  Pc, this packet reaches the remote central controller with a significantly attenuated power level (due to the random attenuation phenomena of the radio channel; e.g., shadowing effects) so that: (1) the packet cannot be decoded correctly; (2) the packet cannot collide with other packets received simultaneously.

· With probability Pc, the packet is received with an adequate power level and can also collide with other packets, which are received with a sufficient power level.

· If a packet is not received correctly (due to either radio channel effects or collisions), it is retransmitted after a random delay (backoff).

It is requested to model this system by determining the relation between the carried traffic load (throughput), S, and the total circulating traffic, G. Finally, we have to determine the maximum traffic load that can be supported by this access system.

Solution

The arrival process of new packets is Poisson. According to the classical approach for Aloha protocols, we make the Poisson approximation for  the total packet arrival process (new arrivals plus retransmissions) with mean rate . The intensity of the offered traffic is S = T, where T denotes the packet transmission time. The intensity of the total circulating traffic is G = T. According to (7.1) of the book, we have:
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where Ps, in this case, represents the probability that a packet is received without collisions and at an acceptable power level.

We focus on the derivation of Ps. Let us consider a reference packet transmitted; it must be received with an adequate power level (probability Pc). Moreover, this packet must not collide with other packets; this entails the different cases listed below:

· There are no simultaneous transmissions (probability P0 of no Poisson arrivals in time T with rate );

· There is one simultaneous transmission (probability P1 of one Poisson arrival in time T with rate ), but it reaches the remote controller with insufficient power level (probability 1 Pc);

· In general, there are k simultaneous transmissions (probability Pk of k Poisson arrivals in time T with rate ), but they reach the remote controller with insufficient power levels [probability (1 Pc)k].

According to the assumptions of this exercise, the fluctuating radio channel entails some form of capture effect for simultaneous transmissions. 

If we consider the Poisson distribution (mean rate ) of the number of simultaneous arrivals with our reference packet in a time T,
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we can express the packet success probability Ps as follows:
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In conclusion, we have the following expression to relate S and G:
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In the case Pc = 1, we re-obtain the classical Slotted-Aloha scheme and the same S-G relation.
S has a function of G has a maximum that can be obtained by means of the following null-derivative condition:
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Hence, the maximum of the throughput is 
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Smax has the same value of the classical Slotted-Aloha protocol. However, this value is achieved for a different G value, which depends on Pc.
Ex. 7.2 We have N stations, each generating packets with mean arrival rate  of 10 pkts/s and mean packet transmission time T = 1 ms. Stations must exchange traffic with a master station by means of a suitable LAN technology.

It is requested to choose (providing adequate justifications) a random access scheme (among Aloha, S-Aloha, nonpersistent CSMA, and 1-persistent CSMA) in order to manage the traffic generated by the different stations in each of the following cases:

1. N = 20, one-way propagation delay  = 20 ms.

2. N = 95, one-way propagation delay   negligible with respect to T.

Referring to the access scheme selected in the second case ( << T), but assuming N = 10, we have to determine the mean number of packets in the system in the case where the mean packet transmission delay (from measurements) is equal to Tp = 2 ms.
Solution

This exercise is intended to compare the characteristics of Aloha, S-Aloha, nonpersistent CSMA and 1-persistent CSMA. Even if we have a finite number of users, N, we refer here to the throughput derivations of the random access schemes for an infinite number of users.

Case #1. We have  = 20 ms >> T = 1 ms (i.e., a >> 1). Under these circumstances CSMA schemes are not efficient; only Aloha and S-Aloha can be adopted. We have to evaluate the input traffic intensity, , to verify whether it can be supported by these access techniques. We have:
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With such a  value the Aloha scheme is unstable. Only the S-Aloha technique can be adopted, since it guarantees to support up to 0.36 Erlangs.

Case #2. We have  << T  (i.e., a ( 0). Therefore, the most appropriate schemes would be nonpersistent CSMA and 1-persistent CSMA. The input traffic intensity, , is:
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Such a high  value can be supported by the nonpersistent CSMA scheme (in the case a ( 0, this access scheme reaches the ideal maximal throughput of 1 Erlang for G approaching infinity), as proved by equations (7.28) and (7.29). The 1-persistent CSMA scheme cannot be adopted, since its maximum throughput (for a ( 0) is lower than 0.6 Erlangs, as shown in Figure 7.21 in the book.

The last question of this exercise refers to the mean number of packets in the system in the nonpersistent case with mean packet delay (from the packet arrival at a station to its correct transmission) equal to Tp. Referring to the case with   << T, the system of the N stations can be modeled by means of a single queue (stations instantly know if the transmission medium is busy due to the use of other stations). The mean number of packets, Np, can be related to the mean packet delay by means of the Little formula:
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Ex. 7.3 Let us consider an optical fiber ring LAN based on the token ring protocol. There are N = 10 stations in the LAN. Considering that the transmission on the optical fiber is at a rate R = 100 Mbit/s, that each station generates a traffic of  = 100 pkts/s, that each packet contains m = 10000 bits, and that the time to send the token from one station to another is  = 10 s, it is requested to determine the mean cycle length. 

If a packet arrives at an empty buffer of a station, how long on average this packet must wait for the service (i.e., before starting its transmission in the ring) ? May this ring network support N = 100 stations, all with the same traffic as the previous ones ?

Solution

The transmission time of a packet is T = m/R = 104 s. The traffic intensity of a station is equal to  = T = 100 ( 104 = 102 Erlangs. The mean duration of a cycle can be obtained from (7.35) of the book as:
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A packet arriving at an empty buffer must wait on average for a time equal to E[Tc]/2 before starting transmissions,.

In the case that the ring has N = 100 stations, each producing a traffic load  = 102 Erlangs, we have that the total traffic intensity N is equal 1 Erlang: the ring cannot support this traffic (instability) and E[Tc] goes to infinity.

Ex. 7.4 We have remote stations using radio transmissions to send control packets to a remote controller. Packets are generated according to  exponentially distributed intervals with mean value T. When a station has a packet ready, it is sent immediately without any form of coordination and synchronization with the other stations. Let  denote the packet transmission time. Partly overlapping packets experience a destructive collision. However, a packet sent by a station without collisions can be received with errors (thus requiring retransmissions) according to the two following independent effects:
· Errors due to the radio channel, with probability p;

· Lack of synchronization at the receiver of the remote controller, with probability q.

We have to model this access protocol and to determine the relation between the offered traffic load, S, and the total circulating traffic, G. Finally, it is requested to evaluate the maximum traffic intensity in Erlangs that can be supported by this systems.
Solution

We consider that the system has to support a high number of stations, each contributing an elementary traffic load. Hence, we analyze this system under the approximation of an infinite number of remote stations (i.e., the arrival process does not depend on the number of packets generated). An ideal feedback channel is assumed (i.e., no errors).

Let S =  denote the offered traffic intensity; let G denote the total circulating traffic in Erlang. We use equation (7.1) to relate S and G by means of the probability Ps that a packet transmission is successful. In this case, the successful packet reception depends on three independent events:

1. There is no packet collision, with probability e2G;

2. There is no packet error due to the radio channel, with probability 1 p;

3. The synchronism is correctly acquired by the receiver,  with  probability 1 q.

Hence, equation (7.1) of the book can be written as follows in the case under examination for this exercise:
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The maximum traffic load that can be correctly carried out by the protocol (stability limit), Smax, is determined by considering the null condition for the derivative of S with respect to G. It is easy to verify that the derivative vanishes for G = 1/2 Erlangs; correspondingly, Smax = (1 q)(1 p)/(2e) Erlangs. As expected, the errors introduced by the channel or the synchronization problems reduce the maximum throughput that can be supported by the access protocol.

Ex. 7.5 Let us refer to a ring LAN with M = 6 stations where the token ring protocol of the exhaustive type is adopted. We know that the time to send the token from one station to another is  = 0.5 ms, equal for all  stations. The rate according to which packets of fixed length are sent in the ring is  = 20 pkts/s. The arrival process of messages at a station is Poisson with mean rate of  = 1 msgs/s. Messages have a length lp (( 1) in packets according to the following distribution:
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It is requested to determine the following quantities:

· The mean cycle duration,

· The stability condition for the buffers of the stations on the ring,

· The mean transfer delay from the message arrival at the buffer of a station to the instant when the message is delivered to another station on the ring. In this case, we have to refer to an exhaustive service policy for the buffers of the stations.
Solution

All the stations of the ring contribute the same traffic load (i.e., the same message arrival process and the same message length distribution). In order to study this system we focus on the distribution of the number of packets per message. This is a truncated binomial distribution because of the removal of the value ‘‘0’’. The PGF of the message length, Lp(z), results as:
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Note that Lp(z) = 1 for z = 1 (normalization condition).

By means of the above PGF it is easy to determine both E[lp] and E[lp2] as described below:
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From (7.35) of the book, the mean duration of a cycle can be obtained as:
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The stability conditions for the buffers of the stations on the ring is that the total traffic intensity is lower than 1 Erlang:
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Finally, we have to determine the mean transfer delay for a message, Ttransf, according to (7.38) and (7.39) of the book (exhaustive discipline):
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Ex. 7.6 We have a random access scheme of the Slotted-Aloha type where stations are divided into two groups:

· Group #1: Stations generate messages composed of one packet (transmitted in a slot of length T); the total message arrival process (first generation and retransmissions after collisions) for group #1 stations is Poisson with mean rate 1.

· Group #2: Stations generate messages composed of two packets (transmitted in two slots); the total message arrival process (first generation and retransmissions after collisions) for group #2 stations is Poisson with mean rate 2.

Assuming that 1 and 2 are known quantities, it is requested to determine the probability Ps1 that a transmission attempt of a type #1 station is successful and the probability Ps2 that a transmission attempt of a type #2 station is successful.  

Solution

Let us refer to Figure 5.1 for the transmission of a type #1 station.
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Figure 5-1. Transmission of a type #1 station and indication of slots A, B and C.

A type #1 message transmission on slot B in Figure 5.1 is successful if the following events occur:

1. No other type #1 message transmission on slot B;

2. No type #2 message transmission starting on slot A;

3. No type #2 message transmission starting on slot B.

Since type #1 and type #2 arrivals are due to independent Poisson arrival processes with total mean rates 1 and 2, respectively, the events at the previous points 1, 2, and 3 occur with the following probabilities:
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These events are independent, so that the successful probability for a type #1 transmission attempt is:
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Let us now refer to Figure 5.2 for the transmission of a type #2 station.
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Figure 5-2. Transmission of a type #2 station and indication of slots A, B and C.

A type #2 message transmission in Figure 5.2 is successful if the following events occur:

1. No type #1 message transmission on slot B;

2. No type #1 message transmission on slot C;

3. No other type #2 message transmission starting on slot A;

4. No other type #2 message transmission starting on slot B;

5. No other type #2 message transmission starting on slot C.
The events at the previous points from 1 to 5 occur with the following probabilities:
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These events are independent, so that the successful probability for a type #2 transmission attempt is:
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Ex. 7.7 Different remote stations transmit packets to a central controller by means of a synchronous random access scheme on multiple carriers (= m carriers), as explained below:

· There are infinite users generating packets, according to a Poisson process with mean rate .

· The transmissions on the different carriers are synchronous.

· Two packets collide destructively if they are transmitted on the same slot (slot length = T) and on the same carrier.

· When a new packet (or a collided packet) has to be (re-)sent, a carrier is selected at random with equal probability among the m carriers.

Note that this access protocol is characterized by multiple Aloha channels according to an FDMA/Aloha format. This protocol has been studied by Abramson under the acronym of MAMA (Multiple Aloha Multiple Access) protocol; see also Reference [30] in Chapter 7 of the book.

We have to determine the relation between the total offered traffic (on m carriers), S, and the total circulating traffic, G. What is the maximum traffic load carried out by this access protocol ?

Solution

In this Slotted-Aloha-like access system both new arrivals and retransmissions are statistically split among the m available carriers with equal probability (see Figure 5.3).
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Figure 5-3. Resources for the multi-carrier Slotted-Aloha scheme.

Let  denote the mean arrival rate of new packets (to be distributed among the m carriers). Let  denote the total mean arrival rate considering both new and retransmitted packets (on the m carriers). Due to the random splitting property of Poisson processes, we have a Poisson arrival process of new packets with mean rate /m on each carrier and a Poisson arrival process of new and retransmitted packets with mean rate /m on each carrier. Let us focus on a given carrier. The traffic intensity offered to this carrier is T/m and the total traffic on this carrier has intensity T/m. We apply equation (7.1) of the book to a single carrier as follows:
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where Ps is the probability of no collision for a packet transmitted on a carrier; hence, we have to consider the probability of no arrivals in a time T for a Poisson process with mean arrival rate T/m:
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For the whole system, the offered traffic has intensity S = T and the total circulating traffic has intensity G =T. By substituting these expressions in the above formulas, we have:
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Thus, we have obtained a relation characterizing the whole system, which is similar to that of a classical S-Aloha scheme. Therefore, we can determine the maximum throughput, Smax, by mean of the following null-derivative condition:
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Hence, Smax = m/e Erlangs; as expected, the S-Aloha system with m carriers allows to increase of m times the maximum throughput of a single-carrier S-Aloha system (i.e., 1/e).

Ex. 7.8 We have a carrier shared by different users by means of synchronous TDMA: the frame has a length Tf and contains N slots. Each user generates messages that are queued to be transmitted on the assigned slot resources of the TDMA frame. Messages are composed of a fixed number L of packets (one packet is transmitted in one time slot). Let us assume that each user has assigned one slot per frame. If the mean interarrival time of messages is equal to T slots, it is requested to determine the traffic intensity for the buffer of a generic user. What is the maximum traffic intensity (stability limit) supported by the user queue ?
Solution

We have a queue for each user, which can transmit one packet per frame on the assigned slot. The traffic intensity offered to a queue, , is obtained as the product of the mean message arrival rate (i.e., 1/T) and the mean message transmission time. Since messages have a fixed length in packets, the message transmission time, Ts, is constant and can be derived as follows:
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In fact, the transmission time entails one frame duration for each of the L 1 packets, plus one time slot for the last packet. Referring to the simple case L = 3 and N = 4, we can verify the above formula of the message transmission time on the basis of Figure 5.4:
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Figure 5-4. Message transmission time for N = 4 and L = 3.

In conclusion, we have the following result for the traffic intensity for the queue of a user:
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The limiting value for the traffic intensity is 1 Erlang. Hence, the stability condition for the user queue is:
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Ex. 7.9 Let us consider a random access system with a synchronous access. We have an infinite number of elementary stations, which generate new packets according to a Poisson process with mean rate . Let T denote the packet transmission time. The different stations perform uncoordinated transmission attempts as described below.

As soon as a station has a packet ready to be transmitted (either a new packet or a retransmission), the station sends the packet on a slot with probability p (permission probability) or repeats this procedure in the next slot with probability 1 p. Two packets transmitted simultaneously collide and must be retransmitted.

It is requested to determine the relation between the offered traffic S and the total circulating traffic G. What is the maximum throughput (in Erlangs) that this protocol can support with a stable behavior ? Are there some differences with respect to the maximum throughput achievable by the classical Slotted-Aloha scheme ?

Solution

This is a random access protocol of the synchronous type where stations generate new packets according to a Poisson arrival process with mean rate . Due to collisions, we have a total arrival process (new arrivals plus retransmissions), which is still modeled by a Poisson process with total mean rate . The offered traffic has an intensity S = T; the total circulating traffic has an intensity G = T. We can relate S and G by means of equation (7.1) of the book, where we derive the probability of a successful packet transmission on a slot, Ps, as follows. We consider our tagged station, which has a packet ready for transmission and can transmit it on a slot with probability p; this transmission is successful in the different cases detailed below:
· There are no simultaneous packet generations (probability P0 of no Poisson arrivals in T with rate );

· There is one simultaneous packet generation (probability P1 of one Poisson arrival in T with rate ), but its transmission is deferred according to probability 1 p;

· In general, there are k simultaneous packet generations (probability Pk of k Poisson arrivals in T with rate ), but their transmissions are deferred according to probability (1 p)k.

By using the Poisson distribution of the number of simultaneous arrivals in T due to the whole arrival process, we have:


[image: image298.wmf](

)

G

k

T

k

k

e

k

G

e

k

T

P

-

L

-

=

L

=

!

!


We can derive the probability of a successful packet transmission on a slot Ps as follows:
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Hence, the following S-G relation is obtained:
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From the null-derivative condition of S = S(G), we obtain the maximum throughput Smax = 1/e Erlangs for pG = 1. This access protocol has the same maximum throughput as the classical S-Aloha scheme. The peculiarity of this scheme is that both new transmissions and retransmissions use the same randomization scheme based on probability p to access the shared channel.
Ex. 7.10 We have a LAN adopting the unslotted nonpersistent CSMA protocol with N = 10 stations. Each station generates new packets according to exponentially distributed interarrival times with mean value D = 1 s. The packet transmission time is T = 10 ms. The maximum propagation delay is  = 0.6 s.

· Determine the approximate relation between the offered traffic, S, and the total circulating traffic, G.

· Determine the total traffic generated by the N stations in Erlangs.

· Study the stability of the nonpersistent protocol in this particular case and in general.
Solution

The arrival process of new packets is Poisson with mean rate  = 1/D = 1 pkts/s for each station. The maximum propagation delay  = 0.6 s is much lower than the packet transmission time T = 10 ms. In this case, parameter a introduced in (7.19) of the book is close to 0. Correspondingly, we can adopt (7.29) of the book to relate the offered traffic S and the total circulating traffic G:
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The intensity of the traffic offered by the N stations is S = NT = 0.1 Erlangs.

In the particular case under consideration (i.e., a ( 0), the nonpersistent CSMA scheme is always stable and can support up to 1 Erlang of input traffic. This is an optimal situation due to the negligible a value. However, if in general a > 0, S = S(G) curve has a maximum highlighting a maximum input traffic beyond which the nonpersistent CSMA scheme becomes unstable. With the total input traffic of 0.1 Erlangs envisaged in this exercise, the access protocol is stable even if a is greater than 0.

Ex. 7.11 Let us consider a WLAN adopting an access protocol of the Slotted-Aloha type. The arrival process of new packets is Poisson with mean arrival rate . The mean packet transmission time is T = 1 ms. This protocol adopts a form of regulation according to which the central controller broadcasts not only a synchronization pulse, but also a probability value 1 p to be used by the remote stations to block (and discard) the transmissions of some packets in case of congestion. We neglect the propagation delays from central controller to remote stations (i.e., remote stations instantly know the value of 1 p to use). 

It is requested to determine an ideal strategy to select the value of p as a function of  so that the maximum possible traffic load is admitted into the network under stability conditions. In particular, we have to determine the regulation law of p as a function of  and the behavior of the carried traffic intensity, S, as a function of .
Solution

The scheme of the access protocol with the ideal regulator has been shown in Figure 5.5:
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Figure 5-5. S-Aloha protocol with an ideal regulator.

On the basis of probability p, the input arrival process to the S-Aloha scheme is Poisson with mean rate p. Let S = pT denote the intensity of the traffic carried by the S-Aloha protocol. Let G = T denote the intensity of the total circulating traffic in the access network. 

On the basis of the classical S-Aloha theory for an infinite number of stations, we have that S and G are related as in (7.9) of the book, that is: S = GeG. Hence, the maximum S value that can be supported by the protocol under stability condition is 1/e Erlangs. Therefore, we can use the following condition to define the regulator:
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In order to fulfill this condition with the maximum value of the carried traffic under stability conditions (i.e., maximum S = pT value, or, equivalently, maximum p value) the following regulator law is proposed for p as a function of :
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With this regulation of the p value, the behavior of S as a function of  is as follows:
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With this regulation, the S-Aloha protocol is always operated under stability conditions even if the input traffic load T is heavy (i.e., greater than 1/e); this is achieved at the expenses of a high packet dropping probability = 1 – p.

Ex. 7.12 Let us consider a Slotted-Aloha system, where packets arrive according to a Poisson process with mean rate  and are transmitted in a time T. The packet transmission power is selected between two levels (namely P1 and P2, with P1 >> P2) with the same probability. This mechanism allows a partial capture effect, as follows:

· Two simultaneously transmitted packets of the same power level class collide destructively (i.e., both packets are destroyed).

· A packet transmitted at power level P1 is always received correctly if it collides with any number of simultaneous transmissions with power level P2 (partial capture effect).

It is requested to determine the relation between the intensity of the offered traffic, S, and the intensity of the total circulating traffic, G. Can this access protocol support an input traffic intensity of 0.5 Erlangs ? Finally, it is requested to derive the mean packet delay.
Solution

Let  denote the mean packet arrival rate of the total circulating traffic (i.e., new arrivals and retransmissions). The intensity of the offered traffic is S = T. The intensity of the total circulating traffic is G = T. To relate S and G we use the classical formula (7.1) where we need to derive the probability of a successful packet transmission Ps.

When a packet must be transmitted, one of the two power levels is chosen at random with equal probability. Hence, we have the following two cases:

· Packet transmission at power level P1: Such a transmission is successful with the probability Ps|1 that no other type #1 transmission is performed in the same slot. Since transmissions are equally distributed on the two power levels, we have: Ps|1 = eT/2 = eG/2.

· Packet transmission at power level P2: Such a transmission is successful with the probability Ps|2 that no other type #1 or type #2 transmission is performed in the same slot. Since transmissions are equally distributed on the two power levels, we have: Ps|2 = eT/2 ( eT/2 = eG.

We can combine the two above equiprobable cases in order to obtain Ps:
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The corresponding expression of S as a function of G is detailed below and graphically represented in Figure 5.6:
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Figure 5-6. S versus G for the S-Aloha protocol with power differentiation.

If G = 0, also S = 0; if G ( ( S tends to 0. Therefore, there is a maximum value of the carried traffic S, which can be obtained by the null-derivative condition for S = S(G). Due to the particular expression of the S = S(G) function of this case, the solution of the null-derivative condition cannot expressed in a closed form. Through numerical evaluations, we have that the maximum S value for this protocol is about 0.5216 Erlangs for G ( 1.5 Erlangs. Hence, this protocol can support an input traffic intensity of 0.5 Erlangs under stability conditions.
If we consider more than 2 power levels, the maximum S value increases. However, the power level differentiation and the capture model considered in this exercise are oversimplified. A realistic model should consider that one packet is successfully captured only if it is received with a power level that has some dBs of margin with respect to the sum of the power levels of the other colliding packets.

The mean packet delay is obtained from (7.11) of the book as:
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where  denotes the round-trip propagation delay (from the remote terminal to the central controller and, then, back to the remote terminal), E[R] denotes the mean delay used for each packet retransmission, and 1/Ps is obtained from the above S = S(G) expression of this access protocol.

Ex. 7.13. Let us consider a Reservation-Aloha access protocol with m minislots per frame for the access phase. Let us assume to have k terminals, which attempt to transmit in the same access phase of a frame randomly selecting one of the minislots. We consider two distinct case studies:

1. Case #1, No capture effect: Two transmissions on the same minislot collide destructively. 

2. Case #2, Ideal capture: Among all transmissions on the same minislot, one is always received correctly.

It is requested to determine in both cases the mean number of successful attempts per access phase.
Solution

Case #1: We have k transmission attempts at random on m minislots. The mean number of successful transmission attempts per access phase is the mean number of minislots with just one transmission attempt. In general, the distribution of the number of successes per access phase can be determined by means of the urn combinatorial analysis [R3]. In this case, the mean number of successful attempts per access phase is N1(k, m) as:
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Normalizing the above expression with respect to k, we obtain the success probability for a transmission attempt in case #1, Ps| case 1:
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Case #2: We have k transmission attempts at random on m minislots. The mean number of successful transmission attempts is the mean number of minislots with at least one transmission attempt. In this case, the mean number of successful attempts per access phase, N2(k, m), is given by the product of the probability of a non-empty minislot, [1 (1 1/m)k], by the number of minislots per access phase:
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The success probability for a transmission attempt in case #2, Ps| case 2 results as:
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The graph in Figure 5.7 compares the two cases in terms of both the mean number of successful attempts per access phase and the success probability for a transmission attempt for m = 6 minislots: as the number of attempts k increases, the mean number of successful attempts per access phase of the no capture case (ideal capture case) goes to 0 (to m = 6).
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Figure 5-7. Comparison of two cases (no capture and ideal capture) for m = 6 minislots per access phase.
[R3] 
N. J. Johnson, S. Kotz. Urn Models and their Applications. John Wiley & Sons, NY, USA, 1977.
Ex. 7.14. Let us consider a Fast Ethernet LAN with UTP cabling (100Base-TX). We have to determine the maximum distance allowed between two terminals in order to have CSMA/CD operating properly in the half-duplex case. In the LAN, each repeater contributes a delay  = 1.3 s and the propagation speed in the UTP cable is v = 1.77(108 m/s. It is requested to determine the maximum distance allowed by the CSMA/CD protocol with one repeater. Is it possible to have two repeaters ?
Solution

Considering that the minimum packet length of 512 bits must allow to reveal simultaneous transmission and reception (i.e., collision), we use (7.31) to determine the maximum distance of the LAN as:
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where Rb = 100 Mbit/s is the transmission bit-rate in the LAN and n denotes the number of repeaters. 

With one repeater the maximum distance is 223 m. With the data of this exercise, n = 2 repeaters cannot be supported because the quantity on the right side becomes negative in the above inequality.

Ex. 7.15 Referring to the IEEE 802.3 standard, it is requested to evaluate the minimum and the maximum MAC layer efficiency allowed by the 10Base-2 LAN technology, considering a continuous flow of frames spaced regularly by IFGs.

Solution

According to the description made in subsection 7.2.5.7 of the book, the minimum IEEE 802.3 frame length is 64 bytes and the maximum frame length is 1518 bytes (case of MAC addresses of 6 bytes). In addition to this, we must consider 8 bytes for preamble and start delimiter field. Note that each packet entails also another protocol overhead, i.e., the IFG time, which corresponds to the transmission of 96 bits (i.e., 12 bytes).

The lowest throughput (efficiency) is achieved when all transmitted frames have the smallest size. Moreover, we consider the worst-case where each frame contains only one information bit (i.e., 1/8 of byte) in the payload, so that the Pad field has to be used to reach the minimum frame length of 64 bytes. Hence, the lowest throughput, l, results as:
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The highest throughput, u, is achieved when the largest frames are transmitted, each containing exactly 1500 information bytes. We have:
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Note that l and u have the same values for all the different types of bit-rates allowed by the IEEE 802.3 standard. However, the following considerations apply only to the 10Base-2 case, where the transmission medium has a bit-rate of 10 Mbit/s: the capacity utilized is about 15 kbit/s in the case of the minimum efficiency (i.e., minimum packet size) and about 9.75 Mbit/s in the case of the maximum efficiency. Note that in a real case we have also collisions that further reduce these capacity levels.
Ex. 7.16 Let us consider a random access scheme, which implements an evolved version of the Slotted-Aloha protocol with Successive Interference Cancellation (SIC), whereby it is possible to recover packets that have undergone a collision. We model the adoption of SIC by simply considering that this scheme is able to successfully recover all colliding packets up to 3 simultaneous transmissions. We consider that the whole packet arrival process from the stations is Poisson with mean rate . Let T denote the packet transmission time. We have to determine the relation between the total offered traffic, S, and the total circulating traffic, G. What is the maximum traffic load carried out by this access protocol ?
Solution

Let  denote the mean arrival rate of the total circulating traffic (i.e., new arrivals and retransmissions). The intensity of the offered traffic is S = T. The intensity of the total circulating traffic is G = T. To relate S and G we adopt a different approach with respect to the classical formula (7.1) of the book. In particular, we consider that there can be multiple successes per slot because of the SIC approach [R3]. S represents the offered traffic load, which is equal to the mean number of successful packet transmissions per slots under the stability condition. S can be obtained considering that one slot is successfully used in the following cases:

· We have a single and successful packet transmission on a slot with the probability P1 = GeG of a single Poisson arrival in a slot.

· We have two successful packet transmissions on a slot with the probability P2 = (G2/2)eG of two Poisson arrivals in a slot.

· We have three successful packet transmissions on a slot with the probability P3 = (G3/3!)eG of three Poisson arrivals in a slot.

· If there are more than three simultaneous transmissions on a slot all the transmissions collide destructively.

Hence, S can be obtained considering the average number of successful packet transmissions on a slot as:
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We may note that if the access scheme would be able to resolve an increasing number of colliding packets, the limiting condition for the above S-G relation is S ( G, the ideal performance of an access protocol. 

The null-derivative condition for S = S(G) entails a third-degree equation to be solved with the Cardano method; only one solution is positive real and then acceptable. We have verified numerically that S has a maximum Smax ( 1.37 Erlangs for Gmax ( 2.27 Erlangs. Note that this approach can also be adopted for the classical Slotted-Aloha protocol, where only the first of the above cases entails a successful packet transmission, so that S = 1× GeG.
As a concluding remark, it is important to note that the model of the SIC approach is oversimplified for the purpose of this exercise. In fact, transmissions use a Spread-Spectrum Aloha (SSA) scheme and a transmission power differentiation. Moreover, SIC uses multiple transmissions of the same packet, but this aspect has not been considered in this exercise. Each copy transmitted of a packet has a pointer to the location of other copies. Hence, the successful reception (i.e., no collision) of one of these copies allows us to remove the interference caused by other copies on other packets transmitted on different slots. The protocol is not totally reliable: it is accepted a certain packet loss after a number of retransmission attempts. This technique requires to adopt SIC-enabled receivers and an iterative algorithm to remove the interference. The process to remove colliding packets is window-based. More details are provided in [R4],[R5]. An enhanced version of the SSA access scheme with SIC is adopted by the S-MIM (S-band Mobile Interactive Multimedia) satellite standard [R6]. Depending on the number of packet replicas and the power imbalance, the maximum throughput Smax can be above 0.6 Erlangs or even above 1 Erlang.
[R4] 
E. Casini, R. De Gaudenzi, O. Herrero, “Contention Resolution Diversity Slotted ALOHA (CRDSA): An Enhanced Random Access Scheme for Satellite Access Packet Networks”, IEEE Transactions on Wireless Communications, Vol. 6, No. 4, pp. 1408-1419, April 2007.

[R5] 
S. Scalise, C. Párraga Niebla, R. De Gaudenzi, Ó. Del Río Herrero, D. Finocchiaro, A. Arcidiacono, “S-MIM: A Novel Radio Interface for Efficient Messaging Services over Satellite”, IEEE Communications Magazine, pp.119-125, March 2013.

[R6] 
ETSI, “Satellite Earth Stations and Systems; Air Interface for S-band Mobile Interactive Multimedia (S-MIM); Part 1: General System Architecture and Configurations”, ETSI TS 102 721-1.
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6. Exercises on Chapter 8: Networks of Queues

This Section contains some examples concerning the Little theorem applied to the networks, the Burke theorem, and the Jackson theorem.

Ex. 8.1 Let us refer to the acyclic network of queues shown Figure 6.1 (Figure 8.5 in the book). Considering that the input arrival processes from outside of the network are independent and Poisson with mean rates shown in Figure 6.1 and that message transmission times are exponentially distributed with mean rates for the different queues shown in Figure 6.1, it is requested to determine the mean delay experienced by a message from input to output of the network.
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Figure 6-1. Network of queues.

Solution

At queue a, the Poisson arrival processes from outside are independent so that their sum is still a Poisson process with mean arrival rate 1 + 2 msgs/s. Queue a is an M/M/1 queue with an input traffic intensity a = (1 + 2)/a = 15/20 Erlangs. Queue a is stable due to the fact that a < 1 Erlang. According to the M/M/1 theory (see Section 5.6 of the book), the mean number of messages in this queue is Na = a/(1 a) = 15/5 = 3 msgs. By means of the Little theorem, the mean delay experienced by a message in queue a is Ta = Na/(1 + 2) = 1/5 s. On the basis of the Burke theorem, the output process from queue a is still Poisson with mean rate 1 + 2. This Poisson output process is randomly split: messages leave the network with probability p and are routed towards queue b with probability 1 p. Hence, the input process to queue b is still Poisson with mean rate (1 p)((1 + 2). Queue b is of the M/M/1 type with traffic intensity b = (1 p)((1 + 2)/b = 6/7 Erlangs < 1 (stability). The mean number of messages in queue b is Nb = b/(1 b) = 6 msgs. The mean message delay for queue b is Tb = Nb/[(1 p)((1 + 2)] = 0.5 s. Neglecting propagation delays, the mean delay experienced by a message from input to output from the network of queues can be expressed as:
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Ex. 8.2 We have to study the network of queues with feedback shown in Figure 6.2 (Figure 8.6 in the book).
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Figure 6-2. Network of tandem queues with feedback.

We know that:

· The message arrival process at queue #1 from outside of the network is Poisson with mean rate .

· The message service times at queues #1 and #2 are independent and exponentially distributed with mean rates 1 and 2, respectively.

· Queues have infinite rooms.

· The routing is stochastic at the output of queue #2.

It is requested to determine:

· The stability conditions for the different queues,

· The state probability distribution for each queue,

· The mean number of messages in each queue,

· The mean message delay from input to output of the network.
Solution

The network of queues in Figure 6.2 fulfills the conditions of the Jackson theorem under the Kleinrock assumption:

· An open network of queues with independent Poisson arrivals of messages at each node;

· Single-server queues with infinite rooms (queues are stable);

· Exponential message service times at the nodes with FIFO discipline

· Arrival process and service time process are independent. This is assured under the Kleinrock assumption: the service time of a message is selected independently each time it passes through a node, this being a new node or one already crossed due to a loop.

· Probabilistic routing: after service completion, the next node is independently selected from message to message.

Hence, according to the Jackson theorem, all queues behave as M/M/1 systems with appropriate mean input arrival rates, which can be derived from the traffic rate equations (8.2) of the book. In particular, we write an equation for each sum point in the network (in this exercise there is just one sum point). Let  denote the total mean arrival rate at the input of queue #1. Under the assumption that queue #1 is stable,  is also the mean completion rate of the messages leaving queue #1 and entering queue #2. Queue #1 (admitting an M/M/1 characterization, according to the Jackson theorem) is stable under the condition  =  Erlang. Queue #2 (admitting an M/M/1 characterization, according to the Jackson theorem) is stable under the condition  =  Erlang. 

The traffic rate equation to determine  is:
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Hence, we can express the traffic intensity for queue #1 as  = p] and for queue #2 as  = p].

According to the M/M/1 theory, the state probability is geometrically distributed for both queues. Let Pn1(n) denote the probability of n messages in queue #1:
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Let Pn2(m) denote the probability of m messages in queue #2:
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The joint state probability distribution for the network state (n1, n2) has a product form expression: Pn1 ( Pn2.

The mean number of messages in queues #1 and #2 are:
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The corresponding mean message delays for queues #1 and #2 are obtained by means of the Little theorem:
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The mean delay T experienced by a message from input to output can be expressed by means of (8.5) where we neglect the propagation delays on the links:
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Note that the term into square brackets represents the mean delay experienced by a message in each pass through queues #1 and #2; whereas, the multiplying factor 1/(1 p) is the mean number of passes through the two queues due to the feedback. This system is very similar to the one studied in Section 8.3.1 of the book.
Ex. 8.3 With reference to the network of queues with feedback in Figure 6.3 (Figure 8.7 in the book), we have to determine the stability conditions for the different queues and the mean delay experienced by a message from input to output, considering that:

· The input traffic flows to the queues from outside of the network are Poisson with mean rates  and 2 for queues #1 and #2, respectively.

· Message service times for both queues are independent and exponentially distributed with the same mean rate .

· Queues have infinite capacity.

· There is a random splitting at the output of queue #2: an arriving message is fed back to queue #1 with probability p and is fed back to queue #2 with probability q.

· 0 < p , q < 1.
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Figure 6-3. Network of queues with feedback.

Solution

Under stability conditions, we have that the mean input and output rates are equal for each queue in Figure 6.3. Let 1 and 2 denote the total mean arrival rates for queues #1 and #2, respectively. Hence, the mean traffic rates in the network can be detailed as shown in Figure 6.4 below. On the basis of this representation, we can write the traffic rate equations for each sum point in the network.
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Figure 6-4. Network with indication of the mean rates on the different links.
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Under the Kleinrock assumption, we consider that the conditions of the Jackson theorem are fulfilled for the network in Figure 6.4, so that queue #1 can be studied by means of the M/M/1 model with mean arrival rate 1 and queue #2 can be characterized by means of the M/M/1 model with mean arrival rate 2. Queues #1 and #2 are stable under the following conditions for the related traffic intensities 1 = 1/ < 1 Erlang and 2 = 2/ < 1 Erlang. Hence, the mean number of messages in queues #1 and #2 can be obtained as functions of 1 and 2 as:
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The mean message delay from input to output, T, can be obtained by applying the Little theorem to the whole system with the two queues as:
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Ex. 8.4 Let us consider the telecommunication network in Figure 6.5 (Figure 8.8 in the book). This network is composed of nodes interconnected by links. The network operates a form of connection admission control on the arriving messages from outside in order to block the excess traffic. We model this control by considering that an arriving message is refused (i.e., not admitted, blocked) by the network with probability Pb. Knowing that the total input traffic to the network has a mean rate and that the total mean number of messages in the whole network is N, it is requested to evaluate the mean delay experienced by an accepted message in order to cross the network.
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Figure 6-5. Network with input traffic, blocked traffic, and carried traffic.

Solution

To solve this exercise we apply the Little theorem to the whole network, considering that the mean rate of messages entering the network is * = (1 Pb). Since the mean number of messages in the whole system is given and equal to N, the mean delay from input to output results as:
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Ex.  8.5 We study the acyclic network of queues (feed-forward network of queues) in Figure 6.6 (Figure 8.9 in the book) where the input processes from outside of the system are Poisson and independent. Determine the mean number of messages in each queue of the network and apply the Little theorem in order to obtain the mean message delay from input to output.
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Figure 6-6. Network of queues.

Solution

All the queues in Figure 6.6 are of the M/M/1 type due to the fact that:

· All input processes are Poisson and independent;

· The sum of independent Poisson processes is still Poisson;

· The splitting is stochastic and maintains the Poisson characteristics of the traffic;

· The network is acyclic;

· All queues have infinite rooms (no blocking event occurs).

On the basis of the classical M/M/1 theory, we can write the following results for the mean number of messages in queue a, Na, and in queue b, Nb:
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where the traffic intensities a and b for queues a and b are obtained as:


[image: image337.wmf](

)

[

]

[

]

(

)

(

)

[

]

Erlangs

1

4

3

1

,

Erlangs

1

2

1

2

1

2

1

3

<

=

+

-

=

<

=

+

+

=

b

b

a

a

p

p

m

l

l

r

m

l

l

l

r


In both cases, the traffic intensities for the queues assure a stable behavior. The mean number of messages in the whole network is Ntot = Na + Nb. Finally, we can apply the Little theorem to the whole network to derive the mean message delay T from input to output as:
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The mean message delay T can also be derived by considering that it is given by a weighted sum of the mean delay to cross queue a, Ta, and the mean delay to cross queue b, Tb. The weight for queue a, wa, is the probability that a new arrival (from outside) crosses queue a; whereas, the weight for queue b, wb, is the probability that a new arrival (from outside) crosses queue b. Weights wa and wb can be expressed as:
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Hence, we achieve the following result for T by applying the Little theorem to each queue:
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By substituting the above formulas for wa and wb in this expression of T, we can easily verify that this expression of T is equal to that obtained above by applying the Little theorem to the whole system. 

Ex. 8.6 Let us consider the network of queues in Figure 6.7 (Figure 8.10 in the book). We know that:

· The message arrival processes from outside for queues #1 and #2 are Poisson and independent with mean rates  and 2, respectively.

· Queue #1 has infinite rooms and exponentially distributed message service times with mean rate .

· Queue #2 has S rooms, S servers, and generally distributed message service times with mean value E[X].

It is requested to determine the mean number of messages in each queue and the mean message delay T from the message arrival at the network to the instant when the message leaves the network from A or from B.
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Figure 6-7. Tandem queues.

Solution

Queue #1 is of the M/M/1 type (Poisson arrivals/exponentially distributed service times/one server). Assuming that 1 = / < 1 Erlang, queue #1 is stable and the output process is still Poisson (mean rate ) due to the Burke theorem. Independent Poisson processes with mean rates  and 2 are summed at the input of queue #2; the resulting process is still Poisson with mean rate + 2. Since the message service time for queue #2 is general, it can be modeled as an M/G/S/S loss queuing system characterized by same state probability distribution as the equivalent Markovian M/M/S/S queue with the same traffic intensity value 2 = + 2E[X]. The blocking probability PB for queue #2 is given by the well-known Erlang-B formula, according to equation (5.37) of the book.
Let N1 and N2 denote the mean number of messages in queues #1 and #2, respectively. According to the M/M/1 classical theory, we have for queue #1:
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According to the M/M/S/S classical theory (see Section 5.9 of the book), we have for queue #2:
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Let T1 and T2 denote the mean delays experienced by a message in crossing queues #1 and #2, respectively. From the Little theorem we have:


[image: image344.wmf](

)

(

)

[

]

X

E

P

N

T

N

T

B

º

-

+

=

=

1

and

,

2

1

2

2

1

1

1

l

l

l


In order to determine the mean message delay from one input to one output (A or B) we consider two different cases depending on the entrance point of the message in our system:

1. Messages arriving at queue #1 from outside of the system. This situation occurs with probability 1/(1 + 2) and corresponds to a mean message delay equal to T1 + (1 PB)T2.

2. Messages arriving at queue #2 from outside of the system. This situation occurs with probability 2/(1 + 2) and corresponds to a mean message delay equal to PB(0 + (1 PB)T2 = (1 PB)T2.

We remove the conditioning on the above cases obtaining the following expression for T:
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The final expression obtained is the application of the Little theorem to the whole network with the two queues, considering the total number of messages in the system (i.e., N1 + N2) and the total mean arrival rate (i.e., 1 + 2). By means of the expressions of N1 and N2, the mean message delay T can also be expressed as:
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Ex. 8.7 Let us consider the cyclic network of queues in Figure 6.8 (Figure 8.11 in the book) where: (1) the input processes from outside of the system are Poisson and independent; (2) message transmission times at the nodes are exponentially distributed with the mean rates shown in Figure 6.8. It is requested to determine the mean number of messages in the whole system and the mean message delay from input to output.
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Figure 6-8. Network of queues.

Solution

Considering that values a, b, a, and b allow the stability of the queues, we can apply the Jackson theorem under the Kleinrock assumption. Hence, all the queues have an M/M/1 (equivalent) behavior. We need first to solve the system of traffic rate equations referring to Figure 6.9 below:
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Figure 6-9. Network of queues with rates.

The system of traffic rate equations is just one equation, since there is a single sum point and, hence, there is just one unknown term:
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For the stability of the two queues, we need to have:
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Then, on the basis of the M/M/1 theory, the mean number of messages in each queue results as:
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The total number of messages in the system is Na + Nb and, therefore, applying the Little theorem, we achieve the mean message delay T as:
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� For the sake of simplicity, we assume here that it is possible to receive an empty message (i.e., a message without packets). Otherwise, we should rescale the binomial distribution to exclude the empty message case. Of course, the solution method of this exercise does not depend on the distribution adopted for the message length.


� This is a special case of the round robin scheme with threshold, which can be studied on the basis of what is written in Sections 7.3.1 and 7.3.3 of the book. Other schemes could also be considered here, like the exhaustive service or the gated service, as explained in Sections 7.3.1 and 7.3.3. These aspects are however beyond the scope of the present exercise.
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