
An Asynchronous Transfer Mode Receiver

Martin Hill

Antonio Cantoni

Tim Moors

Networking Research Laboratory

Department of Electrical and Electronics Engineering

University of Western Australia,

Nedlands, WA, 6009; Australia.

Facsimile
 +61 9 380 1065

Telephone
 +61 9 380 3047

13 March, 1992
Abstract
Asynchronous cell based transmission is the preferred transmission mode for emerging high speed network standards such as the IEEE 802.6 MAN standard and the CCITT BISDN. These networks are envisaged to operate at bit rates in excess of 100 Mbps. The high bit rate and the cell based mode of transmission pose challenging requirements on memory buffer management and the reassembly of packets from constituent cells. This paper describes hardware architecture and memory management techniques developed to achieve the required packet reassembly functions and buffer memory management for a node operating in a high speed ATM based network. The paper also discusses a number of major generic issues addressed during the development.

Keying words: Networks, Packet, Memory Management, MAC, Reassembly

AUTONUMLGL
Introduction

Asynchronous cell based transmission is the preferred transfer mode for emerging high speed network standards such as the IEEE 802.6 Metropolitan Area Network (MAN) standard and the CCITT Broadband Integrated Services Digital Network (BISDN). Asynchronous cell based transport offers the possibility of supporting a wide variety of services in an integrated manner on the one network.

The networks are envisaged to operate initially at bit rates in excess of 100 Mbps. At these high bit rates it is likely that the processing functions required in the lower layers of the protocol stack, (physical layer and much of the Medium Access Control (MAC) layer), will have to be performed by specialised processors custom built for specific protocols. At 155 Mbps the octet data rate will be close to 20 Million octets per second and the cell rate will be close to 0.4 Million cells per second.

Data packets to be sent over an Asynchronous Transfer Mode (ATM) network are segmented into cells by the transmitter and need to be reassembled by the receiver. Packets may occupy from one to a large number of cells, e.g. in IEEE 802.6 there may be up to 210 cells in a packet. Furthermore, the arrival of packets at a particular node can be interleaved requiring the MAC receiver to provide a number of packet reassembly machines able to operate at the peak cell rate to avoid excessively high packet losses.

The MAC receive processor needs to provide a buffer for received packets, to match the high speed of the output of the MAC processor to the lower performance of the upper protocol layers. This buffer, referred to here as the MAC Buffer, may, in connectionless networks without flow control, needs to be large to ensure that the probability of packet loss due to unavailability of buffering resources is sufficiently low [1]. As discussed in a subsequent section of the paper, the need to pipeline sections of the receiver in order to achieve high performance may add to buffer requirements in the receiver.

Memory management is required to allocate memory efficiently in the MAC Buffer. For high performance systems the MAC Buffer may be physically indistinct from the buffers used by the upper layers of the protocol stack. Since much of the data may be invariant as it traverses the protocol stack, the processors implementing the upper protocol layers would access the MAC buffer directly and use buffer cut through techniques to avoid copying of data [2],[3],[4]. However, there are applications in which the MAC needs to interface to a processor running existing higher layer software that interfaces to a specific operating system and makes use of the operating system's buffer pool management. In this case, it is quite likely that packet data must be transferred to the processor's system memory in which the operating system maintains its buffer pools and also may need to be stored in contiguous locations.

This paper describes a MAC receive processor developed for an ATM cell based connectionless data network. The paper also discusses the major issues that were addressed in the development since many of these issues are considered to be generic in nature. The target network is a QPSX Metropolitan Area Network [5] that operates with bit rates up to 140Mbps and is a precursor to the IEEE 802.6 and SMDS,[6], based networks. The design of a receiver for only one bus of the dual bus QPSX network is considered in this paper. The MAC processor was designed to address the problems of high physical layer data rates, the provision of a large number of packet reassembly machines, the provision of a large MAC buffer to hold both fully and partially reassembled packets, random access and the high speed transfer of packet data out of the MAC buffer if required. In particular, the paper describes the use of Video RAM technology to provide the MAC buffer located between the MAC processor and upper layers. The paper also describes an architecture suitable for the implementation of the MAC receiver functions. While a hardware solution to packet reassembly has been adopted, others have proposed [7] that this function can be performed in software and still achieve acceptable performance.

The paper is organised as follows: The basic functions that must be implemented in the MAC receive processor are briefly reviewed. The architecture of a MAC receive processor which can process cells in real time at the peak cell rate is then outlined. Next, the method used to handle a large number of concurrent reassemblies is discussed. Then, an efficient memory management scheme for MAC buffer management is described. The scheme supports a large number of reassemblies and also the buffering of many reassembled packets in the one MAC buffer. The implementation of the reassembly machine and the memory management is then outlined. The requirements of the MAC Buffer are identified and the choice of Video RAM technology to realise the MAC buffer is justified and some aspects of the implementation of the buffer are discussed. The performance achievable with the design is noted in each section as appropriate.

AUTONUMLGL
The MAC Receive Processor

The node protocol architecture we wish to consider and the position of the receive MAC processor within the node architecture is illustrated in Figure 1.

The Physical Layer Processor handles line decoding, synchronisation, serial to parallel conversion and supplies the MAC processor with a continuous stream of octets at a rate dependent on the medium bit rate.

Data is passed from the MAC receive processor to the processor implementing the Logical Link Control layer through a buffer. For most end station nodes the average rate of data flow across this interface is only a fraction of the medium bandwidth, and the unit of data transferred is a packet, whereas cells are the data unit transferred across the Physical Layer Processor-MAC interface. In the receiver described in this paper, buffer cut through is used to provide an area to perform reassembly of packets and an elastic buffer to hold reassembled packets in a common physical memory.

The MAC receive processor also has an interface through which it can be managed. Management may be performed by a microprocessor responsible for initialisation and supervision or as part of the tasks of a processor implementing one or more of the upper layers.
AUTONUMLGL
The Target Network Cell Format and Reassembly Protocol

In this section we briefly describe the essential characteristics of the target network packet and cell format and the basic receive functions that must performed by the MAC receive processor operating in this network.

A cell in the QPSX MAN consists of a five octet header and sixty four octets of payload as shown in Figure 2. Information can be written into cells by nodes via the DQDB medium access protocol, [5], that uses the Access Control Field in the cell header.

Packets to be sent over the network are first segmented by the transmitting node into cells which are then sent on the network using the DQDB access protocol. To enable reassembly of a packet from its constituent cells at the receiving node, a Message Identifier (MID) field in the cell header is used to logically link cells together. In the QPSX MAN the MID is fifteen bits long. The first cell in a packet to be sent is assigned a Beginning of Message (BOM) cell type and contains the packet's destination address. The receiving node's MAC processor must recognize its address in the BOM. If the BOM is destined for the node, the MAC processor must temporarily store the MID and also accept the BOM payload. Subsequent cells belonging to the same packet are labelled as Continuation of Message (COM) cells and are sent with the same MID as the BOM. Since the MID is unique to a specific source and sources do not interleave packets with the same MID, the receiving node's MAC processor can use the MID to recognize and link cells belonging to the one packet. The last cell sent for a packet is labelled as the End of Message (EOM). On receipt of the EOM the receiving node's MAC processor removes the corresponding MID from its list of known MIDs, so that no further COMs and EOMs with the same MID but not destined for the node, are accepted. A new BOM with the MID causes the MAC processor to register once again the particular MID. Figure 3 shows an overview of the packet reassembly state machine. A packet may be short enough to fit in the payload of a cell, in which case the cell is labelled as a Single Segment Message cell. In a practical system the MAC receiver would also provide a mechanism for handling abnormal conditions that might result from EOM cell loss or other malfunctions, for example, a reassembly timeout would be provided.

AUTONUMLGL
The Implemented MAC Receive Processor

AUTONUMLGL
Overview of the MAC Receive Processor

This section provides an overview of the architecture of the MAC receive processor that was developed for the target network briefly described above.

To be able to cope with a wide range of network traffic situations with acceptable packet loss performance, the MAC receive processor must be able to process cell units at the rate at which they arrive from the network, i.e. the MAC receive processor is a cell based processor. At the maximum bit rate of the target network, the 69 octet cells arrive at a node at a rate of one every 4.4 microseconds. To be able to process the cells in real time at this rate, the MAC receive processor was implemented with the pipelined architecture illustrated in Figure 4. The processing of cells from the network was broken up into three independent sequential tasks as shown in the figure.

The first stage of the three stage pipeline separates cell header information from the cell data field and the header and data information are elastically buffered for use by the following stages. This stage also supports the interface between the physical layer processor and the main MAC processor. These two processors operate on different clocks. An independent MAC processor clock avoids having the performance of the MAC processor at other interfaces compromised by different bit rates on the medium and provides improved tolerance to faults in the physical layer.

Address matching, reassembly of cells into packets and organisation of data in the buffer memory is performed by the second stage. Essentially, header information from the first stage is processed to determine the position for the cell data in the buffer memory and a report to the upper layer processor may be generated in the case of an EOM or abnormal termination of packet reassembly.

Data is transferred into the buffer memory by the third stage, which also arbitrates accesses to the buffer between the MAC processor and the processors that implement the higher layers of the protocol stack.

AUTONUMLGL
Reassembly of Interleaved Packets and MAC Buffer Management

In order to handle a large number of reassemblies of interleaved packets efficiently, the second stage of the pipeline shown in Figure 4 was implemented as a single reassembly machine that operates on a selectable context corresponding to a particular instance of a reassembly in progress. In the case of a BOM destined to the node, a context is created and saved, and a reassembly tag for selecting the context is generated. If a COM or EOM cell destined for the node is detected, the context of the reassembly machine is switched to that of the appropriate reassembly in progress. The context of each reassembly consists of a only a few bytes of state information held in the Reassembly Context RAM, and hence a large number of logical reassembly machines can be provided in an economical manner and context switching can occur at the cell rate. A context of the reassembly machine is released for possible reuse immediately after a reassembly has been completed.

The number of reassembly contexts that can be stored and selected may limit the number of concurrent reassemblies. The capacity of the MAC level buffer may limit not only the number of concurrent packet reassemblies that can be supported but also the number of reassembled packets that can be stored, since it is used to store both partially and completely reassembled packets.

In the MAC processor, the buffer memory was completely decoupled from the storage and management of reassembly contexts. Space from a pool of available MAC buffer memory is dynamically assigned to reassemblies as required, which leads to efficient use of buffer memory. The MAC buffer is divided up into a number of smaller blocks referred to as Buffering Units, that can hold multiple cells but not necessarily a complete packet. A pool of Buffering Unit Tags representing unallocated Buffering Units is maintained. The MAC receive processor removes Buffering Unit Tags from the pool as it consumes Buffering Units for packet reassembly. The upper layer processor returns Buffering Unit Tags to the pool when it has finished processing information contained in the Buffering Units that make up a packet.

The MAC processor passes the tags of Buffering Units containing packets to the upper layer processor only when it has finished using the Buffering Units. This approach ensures that the MAC processor and higher layer processor do not concurrently access the same buffer address space.

The efficiency of utilization of the buffer memory for storing packet data depends on the size of the Buffering Units, the size of the cells, and the packet size distribution. It is likely that packets with widely varying lengths will have to be buffered; bimodal packet length distributions have been suggested as common in data communications networks [8], in which very short packets are used for protocol control signalling and long packets for carrying data. The choice of the size of the buffering unit is also influenced by the ease of tag manipulation. Smaller Buffering Units require a larger Buffering Unit Tag pool and more bits for each Buffering Unit Tag. Furthermore, choosing the buffering unit size to be a power of two MAC words simplifies the mapping of Buffering Unit tag to the Buffering Unit address in memory and the manipulation of Buffering Unit Tags.

The use of Buffering Units smaller than a packet results in the packet being fragmented and scattered throughout the buffer memory. The memory management system must provide a means for locating the Buffering Units associated with each packet. A description of the location of the packet components in the buffer must be passed to the upper layer processor when packet reassembly is complete. Once the upper layer processors have a description of a packet, the copying of relatively invariant data may be avoided by accessing the data directly in the MAC buffer provided the memory management system can guarantee exclusive access to the corresponding buffer area. This approach permits buffer cut through techniques to be used in the implementation of the higher layers of the protocol stack and enables performance enhancements to be realised.

In the system developed, the Buffering Units comprising a packet are linked together in a linked list and the start of the linked list along with packet length are passed to the upper layer processor when a reassembly is complete. By integrating the pointer to the next Buffering Unit with the data it is possible to avoid random access and hence the approach matches the serial access nature of one of the ports available on the memory used to realize the MAC buffer in the receiver developed. Figure 5 shows the memory organisation of the MAC buffer. An implementation based on the alternative approach using a descriptor has been described elsewhere [9],[10].
In summary, the MAC buffer memory management system supports the following functions: a) At any instant of time, the allocation of separate areas of the buffer for the MAC processor and the upper layer processor to use. b) The efficient use of the buffer memory for storing both partially and fully reassembled packets. c) An efficient mechanism for the transfer of access to packets between the MAC processor and higher layer processors.
AUTONUMLGL
Reassembly Machine and Memory Management Implementation

Stage 2 of the pipeline shown in Figure 4 provides the reassembly machine, storage for the reassembly contexts and the MAC buffer memory management system. The hardware architecture developed to implement these major functions is shown in Figure 6. In this section the essential characteristics of this architecture are described.

The first stage of the pipeline indicates to the second stage that a cell has been received. In the second stage of the pipeline a decision to accept or discard is then made. This decision is based on the type of cell, its destination address if it is a BOM, reassembly resource availability in the MAC processor, and if a reassembly is currently in progress corresponding to the cell's MID. The receive decision is read by a state machine that controls the hardware functions in the stage.

The association of the MID with one of the active reassembly contexts is performed via the MID RAM lookup table. A pool of Reassembly Tags (RTs) identifying inactive reassembly contexts is maintained in a reassembly tag pool which was implemented using a FIFO. When a new reassembly is commenced a RT is removed from the pool and stored in the MID RAM lookup table at the address pointed to by the MID. Upon completion of a reassembly the RT is removed from the MID RAM lookup table and returned to the RT FIFO. A null tag is used to indicate that a reassembly is not currently associated with an MID.

The RT is used to locate the appropriate reassembly context in the Reassembly Machine Context Memory. Each reassembly context includes; information on where in the buffer memory to place the next cell, the start of the linked list that comprises the packet, and reassembly time out counts.

When the EOM cell of a packet arrives, a report to the upper layer processor must be generated, and the reassembly context released for reuse by a new reassembly. The packet arrival report involves passing the start and length of the linked list describing the packet to the upper layer processor. This is achieved by writing the report to a queue that has been realised with a FIFO. The release of the reassembly context storage is achieved rapidly since it requires only that the reassembly context's tag be removed from the MID lookup table and written back into the RT FIFO. Fast report generation and rapid release of the reassembly context storage and RT enables an EOM to be processed in one cell time.

A Buffering Unit is identified by a Buffering Unit Tag which corresponds to the high order bits of the address of the start of a Buffering Unit in the MAC buffer. The number of bits required to uniquely identify a Buffering Unit is given by:

(1)

where Ms is the MAC Buffer size and Bs is the size of a Buffering Unit. The pool of free Buffering Units is maintained by storing the corresponding Buffering Unit Tags in the Buffering Unit Tag FIFO. Buffering Unit Tags are removed from the FIFO when the reassembly machine requires more buffer memory.

Once a cell is accepted, the position that it will occupy inside the allocated Buffering Unit is calculated and concatenated with the Buffering Unit Tag to form the address of the cell in the MAC buffer. This cell address is then placed in the input Transfer Request Queue shown in Figure 7. The state machine also determines if a new Buffering Unit will be required to accommodate the next cell of the packet. If a new Buffering Unit is required, it is fetched from the Buffering Unit Tag FIFO and a linkage pointer to it is placed at the end of the current buffering unit. This process accomplishes the linking of Buffering Units that comprise the one data packet.

AUTONUMLGL
The MAC Buffer
AUTONUMLGL
MAC Buffer Requirements

In the MAC processor architecture described in the previous section, the MAC buffer is required to provide two logical ports, one to the MAC processor and another to the upper layer processor. The MAC processor requires a high bandwidth port, at least equal to the network rate, and a low access overhead. Data from the MAC processor consists of a stream of 64 octets and hence serial access to the buffer is appropriate. In a system that uses one MAC buffer for a number of MAC processors or shares the buffer between transmit and receive, a number of serial ports would be required.

As noted previously, the processor that implements the upper layer(s) in the protocol stack will either require direct random access to the MAC buffer or to a copy of packet data in the system's main memory. In the latter case it is necessary to support the high speed block transfer from MAC buffer to main memory. In addition, during this transfer it may be appropriate to reformat the data, provide simple filtering functions or the calculation of a checksum. In both the direct and serial access modes, the memory bandwidth required is likely to be less than that required for the MAC processor and furthermore, the upper layer processor is less sensitive to access delays than the MAC processor.

The requirements of the MAC layer buffer that need to be considered when selecting a suitable technology to realise the MAC buffer are summarised below.

o single or multiple MAC ports with high bandwidth, low access latency, serial access ports.

o lower bandwidth ports that provide random and serial access to the memory.

o large size, possibly in the region of megabytes.

o compatible with the proposed memory management system.

o easily testable.

o sufficiently low soft error rate.

AUTONUMLGL
Multiport Memories

In this section some alternatives for realising the multiport MAC buffer are briefly reviewed. A multiport memory allows multiple independent processors concurrent access to a common address space. Arbitration between the processors is required when multiple processors write, or write and read, from the same address. However, in the MAC buffer application, the memory management system ensures that the processors do not concurrently access the same locations in the address space and hence access arbitration is not required.

Memories based on SRAM technology are available that have bit cells which can be accessed (usually in word groups), from a number of ports. External hardware or software normally has to provide arbitration to prevent concurrent accesses to the same bit cells. These multiport memories are small and costly, due to the replication of address decoding and the connections to the bit cells for each port.

A single port RAM can be time multiplexed to emulate a multiport memory. To achieve sufficient bandwidth on each port it is necessary to use fast and expensive SRAMs [2]. Also, additional delay, beyond the memory access time, will be incurred since the RAM controller must synchronise access requests and arbitrate among them. The cost of this additional arbitration delay may be reduced by accessing the RAM in bursts or by providing some form of local caching for each port. These methods are used in shared memory multiprocessor systems [11] .

Video RAMs (VRAMs) are a type of multiport memory that allows access through multiple ports by providing some ports with an on chip cache (Figure 8). The VRAM consists of a standard DRAM array which is accessed in the conventional manner through a single random access port, referred to as the DRAM port. The VRAM also contains a number, K, of Serial Access Memories (SAMs). Each SAM is equal in length to the DRAM row length and is connected to the DRAM array by pass transistors. Data is transferred between the main DRAM array and a SAM a whole row at a time. The SAM acts as a cache between the DRAM array and the SAM port. The transfer of data between the cache and the DRAM is very fast due to the massive connectivity available on chip.

The SAM ports and the DRAM port can operate concurrently as far as external data transfer to or from the ports is concerned. However, the internal transfers between the SAMs and the DRAM array can only be controlled through the single DRAM port [12],[13]. Thus the single DRAM port needs to be time multiplexed to achieve the required internal data transfers for the ports. In current VRAM technology, each SAM provides only unidirectional serial access to the data (i.e. SAM address counter always increments on a transition on the SAM's clock line). This characteristic does impose some restrictions on the manipulation of pointers used for memory management.

Prior to writing data into a SAM from a port, it is necessary to execute one transfer cycle through the DRAM port to initialise the SAM address counter for the write operation. The SAM address counter is loaded with the address bits supplied during the column address phase of the transfer cycle. The transfer cycle will also load into the SAM data from the selected row of the DRAM array. Another cycle is usually required to put the SAM into input mode so that data can be written in from the port. A cycle is required to write the contents of a SAM back into the DRAM array.

To read data from a SAM port only a single transfer cycle involving the DRAM port is required. The transfer cycle enables a SAM to be loaded from the selected row of the DRAM array and also sets the SAM address counter.

In the following sections the characteristics of the SAM ports and DRAM port are examined further and shown to closely match the requirements for the MAC buffer application.

AUTONUMLGL
Video RAM SAM Ports
A SAM port of a Video RAM chip provides a high bandwidth, serially accessed port which suits the requirements of the MAC processor port. A higher bandwidth serial port can be realised by horizontally cascading the VRAMs to form a wide serial bus as shown in Figure 9 without necessarily increasing the DRAM port width. However, as discussed in a subsequent section this approach may introduce inefficiency in memory utilization.

The usable maximum bandwidth available for a MAC processor to transfer a data unit to or from the VRAM can be expressed as

Bmax = (number of bits transferred)/(total time to perform the transfer).

For simplicity, it is assumed that a transfer of a data unit by the MAC processor at a SAM port involves only a single SAM-DRAM array transfer and that special modes have not been exploited to optimize performance, for example, split cycle modes have not been used to achieve overlap of SAM port serial transfers and SAM-DRAM transfers [13]. In the unoptimized mode, the bandwidth that can be sustained can be expressed as

(2)

where

N
=
number of bits in the data unit transferred between the MAC processor and the

SAM port.

W
=
word width of the serial port

Tdroh
=
transfer and arbitration overheads at DRAM port.

C
=
clock cycle time of the SAM port.

The transfer overheads at the DRAM port (Tdroh), when writing data into the Video RAM, can be up to three transfer cycles at the DRAM port, or when reading from the Video RAM be only one DRAM to SAM transfer cycle.

The following example is indicative of the high speed offered by a Video RAM SAM port. Consider an ATM packet switched system where only 44 octets out of 53 in a cell need to be transferred to the MAC buffer. A 32 bit wide SAM port can be formed using eight VRAM chips, e.g. Micron [13]. This results in a 1 Mbyte MAC buffer. Based on the minimum cycle times specified in the data sheet and assuming that only two transfer cycles are required at the DRAM port for writing the SAM to the DRAM array, a line rate of 712 Mbps can be supported. This may be somewhat optimistic since rarely is it possible in practical systems to achieve the minimum cycle times specified in data sheets.

A VRAM can exhibit the equivalent to multiprocessor cache coherency problems because a whole SAM cache is written back to the DRAM row once the SAM port has accepted data. If two or more processors are writing to different parts of the same row of the memory, then the processor which writes its SAM back to the DRAM array last, will overwrite the row with its data.

This cache coherency problem can be overcome by several approaches. Hardware can be used to watch for multiple write accesses to the same row and defer the access of one of the processors. This method may create unacceptable delays for MAC processors if access were deferred.

Video RAMs are available, [13], that can mask transfers between the DRAM array and the SAMs, thus allowing only the modified parts of the SAM to be transferred back to the DRAM row and avoiding the coherence problem.

The memory management system may guarantee mutually exclusive write access to rows and thus avoids the coherence problem. This requires that the size of Buffering Units used to hold packet data be a multiple of the row size. This may result in inefficiency when buffering small packets. In any case, it is undesirable to have the Buffering Units crossing VRAM row boundaries, because two transfers between the SAM and DRAM array are required. Hence, unless masked transfers are supported by the VRAM the buffering unit size may have to be as large as the SAM size. This restriction on the Buffering Unit size may not be acceptable for high speed applications in which horizontal cascading of SAMs is used to achieve a high bandwidth. For example, a 32 bit serial bus based on 256K x 4 VRAMs (1Mbit) with 512 bit rows results in a 2kbyte SAM, which is quite large when considering memory utilization efficiency, should this be important.

While the emphasis has been on the use of a SAM port by the MAC processor, a SAM port may also be used to provide high speed block transfer of packet data from the MAC buffer to another memory or device. The transformation and reformatting of packet data, e.g into contiguous memory, or the generation of a packet checksum may be achieved as part of the block transfer. A linked list method for associating Buffering Units of a packet, as used in the system developed, is advantageous for the implementation of a serial block transfer mode. In the system developed, the block transfer mode was not implemented through a SAM port but through the DRAM port, due to the lack of a second SAM port in the Video RAMs that were used.

AUTONUMLGL
Video RAM DRAM Port

The DRAM port is used to provide the random access port to the MAC buffer for the upper layer processor. The port will be subject to delay since the MAC processor has a higher priority when it requires access to the DRAM port to achieve SAM transfers. Also, the bandwidth of the DRAM port is lower than the SAM ports since a longer cycle time is required for each random access transaction. It is possible to improve the bandwidth available by exploiting the reduced cycle time achievable with enhanced page mode that is supported on most VRAMs.

The most important use of the DRAM port is to effect the control of transfers between the SAMs and the DRAM array as outlined previously. Contention on the DRAM port due to the multiplexing among SAMs is one factor that limits the bandwidth and number of serial ports that can be supported. Consider a system with MAC processors connected to the K SAM ports and suppose that each MAC processor needs to transfer an ATM cell every ATM cell period (Tatm), then the following relations must hold:

[image: image1.wmf]T

a

t

m

³

T

d

r

o

h

+

T

s

t

1

-

T

d

r

o

h

T

r

e

f

,

T

s

t

>

(

K

-

1

)

T

d

r

o

h

K

T

d

r

o

h

1

-

T

r

o

h

T

r

e

f

,

T

s

t

£

(

K

-

1

)

T

d

r

o

h

R

S

|

|

|

T

|

|

|

(3)

where

Tdroh
=
period of transfer overheads at DRAM port

Tst
=
time to perform data unit transfer to / from SAM through port

Troh
=
period of a refresh cycle at the DRAM port

Tref
=
time between refresh cycles being performed

For example, consider the following situation, an ATM cell payload of 44 bytes, a VRAM buffer with two SAM ports [13], using one SAM to write in data and the other to read out data. Suppose that the VRAMs are horizontally cascaded to provide two 32 bit wide SAM ports and a 16 bit wide random access port. With minimum cycle times specified in the data sheets, the maximum data rate through the buffer, using only the SAM ports, would be 585 Mbps. In comparison, if the DRAM port is used exclusively by the Upper Layer Processor, the peak data rates through the DRAM port (16 bits wide) would be 100 Mbps using random access and 355 Mbps for fast page mode.

AUTONUMLGL
Additional Considerations

After power up or at reset most digital equipment is required to execute a set of self test functions to establish with a high level of confidence that the hardware is functioning correctly. Due to the large number of data paths and also the increased complexity of the functions performed that involve a VRAM, and asynchronous operation of VRAMs, the design of the self test of the MAC buffer is likely to be a non trivial problem and requires further consideration [14].

DRAM technology provides benefits of high density and low cost but it is also much more prone to soft errors than SRAM technology. Some protocol standards demand that the probability that a packet passed up from the MAC layer is errored be very small. For example, it is not clear that the SMDS specification of a packet error rate of less than 5 x 10-13 [6] can be achieved when one considers the following scenario: 100kbit packet stored for 10ms in VRAM that has a 10-12 probability of a soft error occurring in a bit during an hour period, [15], will have a probability of 3 x 10-13 of containing an error.

The provision of CRC or checksum coverage over a packet while it is in the buffer may be sufficient to achieve the required error detection probability. For high performance applications, it may be necessary to improve the bit error performance of the memory. This can be achieved by using Error Detection And Correction hardware, although the matter is complicated because of the number of physical ports in use on the VRAM.

AUTONUMLGL
MAC Buffer Architecture

Video RAM technology was chosen to provide the multiport memory for the MAC buffer. The third stage of the pipeline shown in Figure 4 provides control of the Video RAM and its interfaces. The interfaces include

o A high speed serial access port for the MAC processor which accepts a cell and the position in the buffer where it is to be stored.

o A random access port to the buffer for the upper layer processor.

o A serial access port for burst mode access to packet data to be transferred to the upper layer processor's main memory, possibly into a contiguous area.

Figure 7 shows the main components of the third stage of the pipeline used to implement the above functions. The VRAM was organised to provide a 16 bit SAM port and a 16 bit DRAM port for random access.

A state machine controls the DRAM port of the Video RAM and performs all access and transfer cycles at this port. This DRAM port controller accepts addresses and requests from the MAC receive processor, the Upper Layer processor, the Retrieval Machine, refresh, and arbitrates access among them giving priority to the MAC Receive processor.

The serial transfer from the MAC receive processor to the MAC buffer is performed by a separate transfer machine, which frees the DRAM port controller to service other requests while the serial transfer is in progress. This machine also handles the writing of the linkage pointer when required at the end of a Buffering Unit.

A packet retrieval machine was designed to enable the block transfer of packets into a contiguous area of main memory. The upper layer processor programs the retrieval machine for a transfer by passing it the start address and length of the packet. The retrieval machine then removes the data from the MAC buffer via the DRAM port using page mode access. The tracing through the linked list and return of Buffering Unit Tags to the MAC processor is performed automatically by the retrieval machine. It is possible to provide a simpler block tranfer interface that can be used with available DMA controllers that are capable of handling linked lists, However, by tightly coupling the retrieval machine with the the rest of the MAC Receiver it is possible to achieve much better performance. Penalties that arise due to overheads associated with access arbitration, the multiplexing of address lines and synchornization can be avoided.

5.7
Some Performance Results

A wire wrapped prototype that incoporated many of the features of the MAC Receiver described above was developed as a proof of concept. A printed circuit prototype was subsequently developed capable of operating at the 140Mb/s bus rate offered in the QPSX MAN product that is available from Alacatel and Siemens. The prototype has a 2 Mbyte MAC Buffer and can handle up to 8192 concurrent reasemblies. The Buffering Unit size chosen was 256 bytes.

The actual payload carried on the 140Mb/s bus after allowing for various overheads is approximately 110.6Mb/s. Table 1 shows the data rate transfer that can be achieved by the retrieval machine under the high load condition that all cells on the bus are destined to the MAC Receiver. The high performance achieved is clearly evident from the table.

Number of Slots in Packet
Retrieval Machine Data Rate

(Mb/s)

1

83.7

3

106

10

107

16

108

80

110

The read access rate achievable through the parallel port of the BMAC Buffer averaged over a twelve microsecond cycle is 37.8 Mb/s.

AUTONUMLGL
Conclusions
Though constructed for a specific network, many of the issues addressed in the design of the MAC receive processor described, are likely to be encountered in the design of MAC receive processors for other ATM networks. The issues addressed in the paper include the processing of a high speed data stream on a cell basis, the provision of a large number of packet reassembly machines and the provision of efficient and high speed MAC buffer management.

Video RAM technology was shown to match well the requirements for the MAC bufferin terms of capacity, number of access ports and the speed characteristics of the ports. The performance results reported confirm the efficacy of the MAC Reciever architecure described in the paper.

AUTONUMLGL
References

[1]
D. Economou, "Segmented Transfer and Concurrent Reassembly Over a Multiaccess Network with Slotted Service", PhD Thesis, Department of Electrical and Electronic Engineering , University of Western Australia, January 1990
[2]
M. Skov and M. Jensen, "VLSI Architectures Implementing Lower Layer Protocols in Very High Data Rate LANs" Proceedings of IFIP WG 6.4 Workshop HSLAN 1988, Liege, April 1988

[3]
C. Woodside and J. Montealegre, "The Effect of Buffering Strategies on Protocol Execution Performance", IEEE Transactions on Communications, Volume 37, Number 6, June 1989 pp. 545-554

[4]
L. Svobodova, "Implementing OSI Systems", IEEE Journal on Selected Areas In Communications, Volume 7, No. 7, September 1989, pp 1115-1130.

[5]
R. Newman, , Z. Budrikis, and J. Hullett, "The QPSX Man," IEEE Communications Magazine, pp. 20-28, Apr. 1988, vol. 26, no. 4

[6]
Bellcore: TA-TSY-000773, "Local Access System Generic Requirements, Objectives, and Interfaces in Support of Switched Multi-megabit Data Service", Technical Advisory, Issue2, March 1990

[7]
E. Cooper, O. Menzilcioglu, R. Sansom, and F. Bitz: "Host interface design for ATM LANs"; in Proc. 16th Conference on Local Computer Networks, October 1991

[8]
R. Gusella, "A Measurement Study of Diskless Workstation Traffic on an Ethernet", IEEE Transactions on Communications, Vol. 38, No. 9, September 1990 pp 1557-1568

[9]
T. Moors, "A Packet Switched Receiver for IEEE 802.6 Metropolitan Area Networks", Bachelor of Engineering Thesis, Department of Electrical and Electronics Engineering, University of Western Australia, 1989

[10]
National Semiconductor Corporation, "DP83265 BSI Device (FDDI System Interface)", Fiber Distributed Data Interface (FDDI) Databook, 1991, pp 2-260 to 2-334
[11]
D. Cheriton, H. Goosen and P. Boyle , "Paradigm: A Highly Scalable Shared-Memory Multicomputer Architecture", IEEE Computer Magazine, Feb. 1991, pp. 33-46
[12]
Texas Instruments Inc. "TMS4461 Multiport Video RAM Data Sheet", MOS Memory Data Book 1989 pp 4-27 to 4-58, Texas Instruments Inc.

[13]
Micron Technology Inc. "Micron MT43C4257/8 Triple Port DRAM Data Sheet" Micron Technology Inc. 1990

[14]
A. Tejeda, "Innovative Video Ram Testing", Proc. Testing's Impact on Design & Technology, International Test Conference Sept. 8-11, 1986, pp. 798-807

[15]
Texas Instruments Inc. Application Note, "Mean Time Between Events, A discussion of Device Failures in DRAMs", Cache Memory Management Data Book 1990, pp 8-73 to 8-84

Captions

Figure 1
Node architecture and mapping of OSI Reference Model

Figure 2
Packet segmentation and cell format

Figure 3
Reassembly state machine

Figure 4
MAC receive processor pipeline

Figure 5
Buffer memory organization

Figure 6
Architecture of Stage 2: reassembly and memory management

Figure 7
MAC buffer architecture

Figure 8
Structure of Video RAM

Figure 9
Bank of Video RAM

�	Supported by an Australian Government Generic Industry Research and Development Grant

�	Supported by an Australian Telecommunications and Electronics Research Board Postgraduate Scholarship in Telecommunications.

 page 1
 page 23

