Sujet du bac TES Liban 2006-2007 Exercice 2 - page pour se ...
corrigé bac svt polynésie 2003
Part of the document
TES1/ 4 DST probabilités
Sujet du bac TES Liban 2006-2007
Exercice 2
5 points
Les partiesAetBsont indépendantes.
Les places d"une salle de cinéma sont toutes occupées. Le filmproposé est une rediffusion d"une comédie à grand
succès. Dans cette salle, les hommes représentent 25 % des spectateurs, les femmes2
5des spectateurs et les
autres spectateurs sont des enfants.1
5des hommes et 30 % des femmes ont déjà vu ce film au moins une fois. À la fin de la projection, on interroge
au hasard une personne sortant de la salle.
On appelle :
H l"évènement : " la personne interrogée est un homme »
F l"évènement : " la personne interrogée est une femme »
E l"évènement : " la personne interrogée est un enfant »
V l"évènement : " la personne interrogée avait déjà vu le film avant cette projection »
V l"évènement : " la personne interrogée n"avait jamais vu lefilm avant cette projection ».
La notation?(A) désigne la probabilité de l"évènement A.
La notation?B(A)désigne la probabilité de l"évènement A sachant que B est réalisé.
Partie A
1.À l"aide des notations ci-dessus, traduire la situation décrite en recopiant et en complétant l"arbre pondéré
dont le départ est proposé ci-dessous. On prendra soin de le compléter au fur et à mesure.
Solution :Voici l"arbre de probas correspondant :
Ω
?
0,25
?
0,2
?0,8
?
0,4
?
0,3
?0,7
?0,35
4
?
5?
2. a.Exprimer à l"aide d"une phrase l"évènement H∩V.
Solution :?∩?correspond à l"événement " la personne est un homme eta déjà vu le film ».
b.Donner?H(V) et en déduire?(H∩V).
Solution :??(?) =15= 0,2. Donc?(?∩?) =?(?)×??(?) = 0,25×0,2 = 0,05.
3.La probabilité que l"évènement V soit réalisé est égale à0,345.
a.Déterminer?(
V).
Solution :On a?(?) = 1-?(?) = 0,655.
b.Déterminer la probabilité que si l"on interroge un enfant, il ait déjà vu ce film au moins une fois avant
cette projection.
Solution :On cherche??(?).
On sait que?(?) = 0,345et?(?∩?) = 0,05et?(?∩?) = 0,4×0,3 = 0,12donc
?(?∩?) = 0,345-(0,05 + 0,12) = 0,175.
Puis??(?) =?(?∩?)
?(?)=0,1750,35= 0,5.
1/ 4
TES2/ 4 DST probabilités
4.On interroge au hasard et successivement quatre personnes sortant de la salle. On suppose que le nombre
de spectateurs est suffisamment grand pour assimiler l"interrogation au hasard d"un spectateur à un tirage
avec remise. Quelle est la probabilité arrondie à10-3près, qu"au moins une personne ait déjà vu le film
avant cette projection?
Solution :On étudie d"abord l"événement complémentaire : aucune des 4personnes n"a déjà vu le film.
Cet événement a pour probabilité(0,655)4à cause de l"indépendance.
La probabilité qu"au moins une personne ait déjà vu le film avant cette projection est1-(0,655)4≃0,816.
Sujet du bac TES Pondichéry 2004
Exercice 2
5 points
Dans une académie, les élèves candidats au baccalauréat série ES se répartissent en 2003 selon les trois ensei-
gnements de spécialité : mathématiques, sciences économiques et sociales et langue vivante.
Nous savons de plus que :
37 % des candidats ont choisi l"enseignement de spécialité mathématiques;
25 % des candidats ont choisi l"enseignement de spécalité langue vivante;
21 % des candidats ont choisi l"enseignement de spécialité mathématiques et ont obtenu le baccalauréat;
32,5 % des candidats ont choisi l"enseignement de spécialité sciences économiques et sociales et ont obtenu le
baccalauréat.
De plus, parmi les candidats ayant choisi l"enseignement despécialité langue vivante, 72,5 % ont obtenu le
baccalauréat.
On interroge un candidat pris au hasard.
On note :
M l"évènement " le candidat a choisi l"enseignement de spécialité mathématiques »;
S l"évènement " le candidat a choisi l"enseignement de spécialité sciences économiques et sociales »;
L l"évènement " le candidat a choisi l"enseignement de spécialité langue vivante »;
R l"évènement " le candidat a obtenu le baccalauréat ».
On pourra faire un arbre pour faciliter la réponse aux questions. Les résultats demandés seront arrondis au
millième près.
1.Traduire en termes de probabilités et en utilisant les notations indiquées les informations numériques
données ci-dessus.
Solution :37 % des candidats ont choisi l"enseignement de spécialité mathématiques; donc?(?) = 0,37
25 % des candidats ont choisi l"enseignement de spécalité langue vivante; donc?(?) = 0,25
21 % des candidats ont choisi l"enseignement de spécialité mathématiques et ont obtenu le baccalauréat;
donc
?(?∩?) = 0,21
32,5 % des candidats ont choisi l"enseignement de spécialité sciences économiques et sociales et ont obtenu
le baccalauréat. donc
?(?∩?) = 0,325
De plus, parmi les candidats ayant choisi l"enseignement despécialité langue vivante, 72,5 % ont obtenu
le baccalauréat; donc
??(?) = 0,725
2. a.Solution :
2/ 4
TES3/ 4 DST probabilités
Ω
?
0,37
?
?
?
0,25
?0,725
?
?
?
?
Déterminer la probabilité pour que ce candidat ait choisi l"enseignement de spécialité sciences éco-
nomiques et sociales.
Solution :On a?(?) +?(?) +?(?) = 1donc?(?) = 1-(0,37 + 0,25) = 0,38.
b.Déterminer la probabilité pour que ce candidat ait choisi l"enseignement de spécialité langue vivante
et ait réussi aux épreuves du baccalauréat.
Solution :On cherche?(?∩?) =?(?)×??(?) = 0,25×0,725 = 0,181.
3.Quelle est la probabilité pour que ce candidat ait choisi l"enseignement de spécialité langue vivante et ait
échoué au baccalauréat?
Solution :On cherche?(?∩?) =?(?)×??(?) = 0,25×0,275 = 0,06875≃0,069.
En effet,??(
?) = 1-??(?) = 1-0,725 = 0,275.
4.Ce candidat a choisi l"enseignement de spécialité mathématiques.
Quelle est la probabilité qu"il n"ait pas obtenu le baccalauréat?
Solution :On cherche??(?):
?
?(
?) =?(?∩?)
?(?)=?(?)-?(?∩??(?)=0,160,37≃0,44
5.Montrer que le pourcentage de réussite au baccalauréat pourles candidats de ES dans cette académie est
71,6 %.
Solution :D"après la formule des probabilités totales,
?(?) =?(?∩?)+?(?∩?)+?(?∩?) = 0,21+0,325+?(?)×??(?) = 0,21+0,325+0,25×0,725 =
0,716
Le pourcentage de réussite au baccalauréat pour les candidats de ES dans cette académie est donc de
71,6 %.
6.On interroge successivement au hasard et de façon indépendante trois candidats.
Quelle est la probabilité qu"au moins l"un d"entre eux soit reçu?
Solution :L"événement " au moins une personne sur les trois a est reçu » est l"événement contraire de
" toutes les trois ont échoué à l"épreuve ».
Par indépendance, la proba que " toutes les trois ont échoué àl"épreuve » est de(1-0,716)3= (0,284)3.
Et par suite,?(" au moins une personne sur les trois a échoué à l"épreuve ») = 1-(0,284)3≃0,977.
Sujet du bac TES Antilles 2008-2009
Exercice 15 points
Une boîte de chocolats contient 50 % de chocolats au lait, 30 % de chocolats noirs et 20 % de chocolats blancs.
Tous les chocolats de la boîte sont de même forme et d"emballage identique.
Ils sont garnis soit de praliné soit de caramel et, parmi les chocolats au lait, 56 % sont garnis de praliné.
On choisit au hasard un chocolat de la boîte. On suppose que tous les choix sont équiprobables.
On note :
3/ 4
TES4/ 4 DST probabilités
∙L : l"évènement " le chocolat choisi est au lait »;
∙N : l"évènement " le chocolat choisi est noir »;
∙B : l"évènement " le chocolat choisi est blanc »;
∙A : l"évènement " le chocolat choisi est garni de praliné »;
∙
A : l"évènement " le chocolat choisi est garni de caramel ».
Tous les résultats seront donnés sous forme décimale.
1.Traduire les données du problème à l"aide d"un arbre de probabilité.
Solution :
Ω
?
0,5
?0,56
?
0,44
?
0,3
?
?
?
0,2?
?
2.Donner la probabilité que le chocolat choisi soit garni de praliné sachant que c"est un chocolat au lait.
Solution :D"après l"énoncé,??(?) = 0,56.
3.Déterminer la probabilité que le chocolat choisi soit au lait et garni de praliné.
Solution :
On cherche?(?∩?) =?(?)×??(?) = 0,5×0,56 = 0,28.
4.Dans la boîte, 21 % des chocolats sont noirs et garnis de praliné.
Montrer que la probabilité que le chocolat choisi soit garnide praliné, sachant que c"est un chocolat noir,
est égale à0,7.
Solution :On sait maintenant que?(?∩?) = 0,21. Or?(?∩?) =?(?)×??(?) = 0,3×??(?).
Donc??(?) =0,21
0,3= 0,7.
5.Dans la boîte, 60 % des chocolats sont garnis de praliné.
a.Déterminer la probabilité que le chocolat choisi soit blancet garni de praliné.
Solution :On sait maintenant que?(?) = 0,6. Or d"après la formule des probabilités totales
?(?) =?(?∩?) +?(?∩?) +?(?∩?) = 0,28 + 0,21 +?(?∩?).
Donc?(?∩?) = 0,6-(0,28 + 0,21) = 0,11
b.En déduire la probabilité que le chocolat choisi soit garni de praliné sachant que c"est un chocolat
blanc.
Solution :On cherche??(?).
Or??(?) =?(?∩?)
?(?)=0,110,2= 0,55.
6.On dispose de deux boîtes de chocolats identiques à celle décrite précédemment. Une personne prend
au hasard un chocolat dans la première boîte, puis un chocolat dans la deuxième boîte (les tirages sont
indépendants).
Déterminer la probabilité de l"évènement : " l"un des chocolats choisi est garni de praliné et l"autre est
garni de caramel ».
Solution :
Pour que cet événement se réalise, il faut que le premier est un praliné et le second un caramel ou bien
que le premier est un caramel et le second un praliné.
On a donc comme probabilité (par indépendance) :2×?(?)×?(
?) = 2×0,6×0,4 = 0,48.
4/ 4
zéro » : éléments de corrigé Éléments de corrigé Sujet 3 Tondeu Avertissement : Les sujets proposés ne sont pas représentatifs de l'ensemble des possibilités offertes par les programmes et la définition des épreuves de sciences
nom : correction tpros sujet 1 controle n°1 sur statistiques a 2 variables Le gérant d"une salle de remise en forme vous demande de réaliser une étude permettant de prévoir le nombre d"abonnements annuels qu"il peut espérer en 2008
Corrigé du DS4 Exercice 1 Exercice 2 Un organisme utilise le taux moyen annuel pour estimer le nombre d"internautes dans les cinq zones en 2005. Ces cinq prévisions sont donc ( en millions d"individus )
Annales officielles SUJETS ? CORRIGÉS - PGE - PGO Sujet du bac TES. Pondichéry 2004. Exercice 2. 5 points. Dans une académie, les élèves candidats au baccalauréat série ES se répartissent en 2003 selon les
Annales QIAB 2002-2003 - UPBM TPROS SUJET 1. CONTROLE N°1 SUR STATISTIQUES A 2 VARIABLES. EXERCICE 1 (sur 4,5) Bac Pro Secrétariat 2008 Bac Pro Alimentation 2003.
Corrigé du bac STG - Sujet de bac Le taux d'évolution en Asie pacifique entre 2003 et 2004 vaut 26 %. est l'?évènement « l'élève choisi au hasard n'a pas obtenu son baccalauréat »
Centres étrangers I ? Série ES ? Juin 2003 - Exercice Un livreur d ... A. B. C. Exercices de spécialité. 4. Page 2. Baccalauréat S. 2. Antilles?Guyane juin 2005. 1. a. Déterminer suivant les valeurs de l'entier naturel non nul n le reste
ÉPREUVE DE MATHÉMATIQUES corrigé Série STG - Profmath55 Annales officielles. SUJETS ? CORRIGÉS. BAC+2 admission en 1re année d'?ESC. BAC+3/4 The Economist Global Executive, December 4th, 2003. Text 2: Faire des exercices simples et les annales du concours en temps limité. ? Bien lire
Corrige complet du bac ES Mathématiques Spécialité - Sujet de bac Nous avons cette année ajouté des corrigés : ils sont réalisés bénévolement par les collègues sous leur responsabilité. Bureau des enseignements post-?baccalauréat DLC5. Arrêté portant Les sujets comportent : deux exercices de.
Mathématiques Annales 2003 - ARPEME Centres étrangers I ? Série ES ? Juin 2003 - Exercice. Un livreur d'une société de vente à domicile doit, dans son après-midi, charger son camion à l'entrepôt
CORRECTION SUJET NATIONAL ? BAC S - 2003 B) CORRECTION 0 ? x ?2002 et ax ? b [2003]. Exercices de spécialité. 75. Page 76. A. P. M. E. P.. Baccalauréat S.
Baccalauréat S 2003 L'intégrale de septembre 2002 à juin 2003 2) Analyser l'erreur commise dans l'exercice 2 et donner une correction. Exprimer les mesures des angles ABO, BAC, ACB, CBD et ODC en fonction de .