Séries de fonctions - Licence de mathématiques Lyon 1

... fonction de terme général . Allez à : Exercice 1. Correction exercice 2. 1. On va appliquer les règles de Riemann avec. ( ). (. ) Donc la série (numérique) de ...


Généralités sur les fonctions:Exercices corrigés - PharedesMaths Partie B. Dresser le tableau de variations de la fonction k en s'aidant de la représentation graphique donnée. Exercice 2. Seconde/Fonctions-Généralités/exo-024 
domaine de définition Exercice 3 Calculer le domaine de définition des fonctions f définies de la façon suivante : a. f(x) = 5x + 4 x2 + 3x + 2. , b. f(x) = px + 3.
Fonctions ? Corrections des Exercices Calculez le ou les antécédents par g de 0, 1 et ?3. Correction : On a g(x)=0 ? x ? 3=0 ? x = 3. Donc 0 possède un unique antécédent par g, qui est 3.
Corrigé du TD no 11 Finalement, f +g +|f ?g| est la somme de trois fonctions continues, donc est continue, ce qui montre que max(f,g) est continue. Exercice 3. 1. Montrer que l' 
exercices corrigés sur l'etude des fonctions Exercices corrigés Fonctions a. En + ? et en ? ? f se comportre comme. 3. 2 x x x. = et tend vers +? ; en 2, on a (1,99) 391 f. ? - et. (2,01) 409 f. ?.
TRAVAUX DIRIGÉS N°1 - MATHÉMATIQUES Tracer sommairement la courbe (C) et la tangente (T). Exercice 2. Etude d'une fonction polynôme du 3ème degré. Soit la fonction de la variable réelle définie 
de la 1`ere S `a la TS. Chapitre 4 : Études de fonctions Exercice n?1 Exercice n?1: On donne la fonction f définie sur R par : f(x) = ?x4 + 2x2 + 1. On appelle ? la courbe représentative de f dans un rep`ere orthonormé (O; ?, 
On considére le sous-espace vectoriel F de R 4 vecteurs u et v dans la base (e1,e2) de F. Le déterminant de cette matrice est non nul. Donc, (u, v) est une base de F. 3. Page 4. Correction de l'exercice 2 :.
Espaces vectoriels de dimension finie 1 Base - Exo7 Correction de l'exercice 5 ?. 1. Tout d'abord la famille {P0,P1,P2, ,Pn} contient n+1 vecteurs dans l'espace E = Rn[X] de dimension n+1. Ici un vecteur 
Géométrie dans l'espace Exercice : Démontrer le parallélisme d'une droite et d'un plan. 15. Exercice : ROC : Démonstration du théorème du toit. 16. Vecteurs coplanaires. 17. Exercice.
Exercices corrigés Alg`ebre linéaire 1 Exercice 3 Soient (E,+,·) un R-espace vectoriel, {x1, ,xm} une famille de vecteurs de E. Montrer que F := vect{x1, ,xm} est un sous-espace vectoriel de E.
Exercices sur les vecteurs Exercices sur les vecteurs. Exercice 1. ABCD est un parallélogramme et ses diagonales se coupent en O. (1) Compléter par un vecteur égal : a) AB = JJJG b