EXERCICE II : LE SPECTROMÈTRE DE MASSE

EXERCICE II : LE SPECTROMÈTRE DE MASSE (9,5 points). 1. Étude d'un
spectre de masse. 1.1. D'après le document 1, l'abscisse du pic moléculaire situé
le ...

Part of the document


Bac S 2014 - Polynésie Correction ©
http://labolycee.org
EXERCICE II : LE SPECTROMÈTRE DE MASSE (9,5 points)
1. Étude d'un spectre de masse
1.1. D'après le document 1, l'abscisse du pic moléculaire situé le plus à
droite sur le spectre de masse est égale à la masse molaire de la molécule
de pentan-2-one soit 86 g.mol(1.

Calculons la masse molaire moléculaire de la pentan-2-one :
M(C5H10O) = 5.M(C) + 10.M(H) + M(O)
= 5 ( 12 + 10 ( 1,0 + 16
M(C5H10O) = 86 g.mol(1.
On retrouve bien la valeur indiquée sur le spectre de masse.

1.2. On a : M(C5H10O) = M(C4H7O) + M(fragment complémentaire)
Soit M(fragment complémentaire) = M(C5H10O) - M(C4H7O)
= 86 - 71 = 15 g.mol(1.
L'abscisse du fragment complémentaire est donc égale à 15 g.mol(1.









1.3.1. Formule semi-développée de la pentan-2-one :


1.3.2. Le fragment le plus abondant est celui dont le pic a l'ordonnée la
plus élevée ; il s'agit du pic d'abscisse 43 g.mol(1.
Cette masse molaire correspond à celle de la chaîne carbonée
ainsi que celle du groupe d'atomes :


En effet M(C3H7) = 3(12 + 7(1,0 = 43 g.mol(1.
Et M(C2H3O) = 2(12 + 3(1,0 + 16 = 43 g.mol(1.
La liaison a été coupée au niveau de la flèche indiquée sur la formule semi-
développée ci-dessus.

2. Obtention des fragments ionisés.
2.1. La longueur d'onde de la lumière émise par le laser est ? = 337,1 nm.
Elle est inférieure à 400 nm et appartient au domaine du rayonnement
ultraviolet.

|2.2. La lumière émise par |VRAI |La surface de l'impact sur la cible est très |
|le laser est directive | |petite : 500 µm x 600 µm. Le diamètre du |
| | |faisceau laser correspond à environ 500 µm. |
|La lumière émise par le |FAUX |La lumière émise par le laser est |
|laser est polychromatique | |monochromatique car elle n'est constituée que|
| | |d'une seule longueur d'onde ? = 337,1 nm. |
|Le laser produit une |FAUX |La fréquence des impulsions est de f = 10 Hz.|
|impulsion toutes les 10 ms| |Cela correspond à une période des impulsions |
| | |égale à [pic]= 0,10 s soit 100 ms. |

2.3. Lors d'une émission stimulée, un photon incident interagit avec un
atome dans un état excité. Le photon incident provoque l'émission d'un
second photon par cet atome. L'énergie E = h.( du photon incident doit être
égale à la différence d'énergie E2 - E1 entre deux niveaux d'énergie de
cet atome. Le photon incident et le photon émis ont même fréquence, même
direction et sens de propagation et sont en phase.

https://youtu.be/UDxdq_ogqR8


2.4. L'existence de la molécule de propanone sur Terre montre que la
puissance lumineuse de la lumière solaire par m² est insuffisante pour la
fragmenter.
Il faut donc un laser dont la puissance lumineuse par m² soit supérieure à
1 kW.m-2.

Le laser du spectromètre fournit une puissance lumineuse de P = 30 kW
répartie sur la surface du capteur S = 500×10-6 × 600×10-6 = 3,00×10-7 m².
Déterminons la puissance lumineuse par m² de ce laser :
P = 30 kW ( S = 3,00×10-7 m²
PS = ? ( 1 m²
PS = [pic] = 1,0 ×108 kW.m-2
Cette puissance est très nettement supérieure à 1 kW (100 millions de fois
plus).

3. Détection des fragments
3.1.1. Pour que les fragments soient accélérés de la cible vers la grille,
la force électrique [pic] doit être horizontale et orientée vers la droite.
Les fragments ionisés Fi+ ont une charge qi = e positive, on a donc :
[pic]. Ainsi le champ électrique [pic] est colinéaire et de même sens que
la force électrique [pic].

[pic]
3.1.2. D'après l'énoncé, l'énergie cinétique EC(B) d'un fragment au point B
est égale au travail de la force électrique qu'il subit entre les points A
et B :
EC(B) = WAB([pic]) soit [pic] d'où [pic] = F.AB
Comme F = e.E alors F.AB = e.E.D et comme [pic] alors F.AB = e.U
On obtient [pic] et finalement [pic] en ne conservant que la solution
positive.
[pic] = 3,0(105 m.s(1.
3.1.3. La théorie de la relativité restreinte donne la relation entre la
durée mesurée ?tm et la durée propre ?tp : ?tm = ?.?tp avec ? = [pic].
Calculons [pic] donc ? ? 1.
La dilatation des durées n'est pas perceptible ici.
3.2. Entre la grille et le détecteur, il n'y a plus de champ électrique :
les fragments ne subissent donc plus de force électrique. Par ailleurs, le
poids de chaque fragment est négligé dans l'étude. Ainsi entre la grille et
le détecteur, les fragments ne sont soumis à aucune force.
Or la première loi de Newton indique : « Dans un référentiel galiléen, si
un système n'est soumis à aucune force ou s'il est soumis à un ensemble de
forces qui se compensent, alors le système est immobile ou en mouvement
rectiligne et uniforme ».
À la sortie de la grille, les fragments ont une vitesse v non nulle, donc
d'après la première loi de Newton ils ont un mouvement rectiligne et
uniforme.
3.3.1. Le temps de vol TOF est la durée pour qu'un fragment parcourt la
distance entre la cible et le détecteur : TOF = tCG + tGD
avec tCG la durée du parcours entre la cible et la grille
et tGD celle entre la grille et le détecteur.
Soit L la distance séparant la grille du détecteur alors, le fragment ayant
un mouvement rectiligne et uniforme à la vitesse v on a : v = [pic] soit
[pic].
Entre la cible et la grille la durée tCG s'obtient en appliquant la
deuxième loi de Newton au fragment de masse m constante, dans le
référentiel terrestre supposé galiléen :
[pic] donc [pic] soit [pic]
Or [pic] donc [pic].
En projetant sur un axe horizontal orienté positivement vers le détecteur
et d'origine A, il vient :
[pic] soit en primitivant : [pic]
À t = 0, en A, le fragment ayant une vitesse nulle : vx(0) = 0 donc 0 +
C1 = 0.
Soit : [pic].
Comme vx = [pic], en primitivant on obtient x(t) = [pic]+ C2
En t = 0 s, le fragment est en A origine du repère x(t=0) = 0 donc C2 = 0.
En t = tCG, on a x(tCG) = [pic] = D
Alors tCG = [pic] = [pic]
Finalement : TOF = [pic]+[pic]
Remarque : autre méthode possible pour trouver tCG
On a montré au 3.1.2. que pour t = tCG, on a v(tCG) = v = [pic] donc :
[pic] = [pic]
Soit tCG = [pic].[pic] , comme E = [pic] alors tCG = [pic].[pic]
D'où : tCG =[pic] = [pic]
tCG =[pic]

3.3.2. Le TOF est proportionnel à [pic] avec m la masse des fragments. Les
fragments de la molécule ayant des masses différentes ils sont détectés les
uns après les autres. Les fragments les plus légers sont détectés avant les
plus lourds.

3.3.3. Le TOF augmente lorsque la distance L augmente. Le détecteur pourra
d'autant mieux discriminer les fragments que la distance L choisie est
grande.
-----------------------
Masse molaire de la pentan-2-one

Fragment le plus abondant

Masse molaire du fragment complémentaire à C4H7O.

CH3

CH2

CH2

O

C

CH3

CH3

CH2

CH2

O

C

CH3

coupure

O

C

CH3

CH3

CH2

CH2

Photon incident

Photon émis

E

E2

E1

h(

h(

h(

[pic]

[pic]