Correction des exercices chapitre 4 - Exercices corriges

Physique Correction exercices. Correction des exercices chapitre 12. Exercice
8 p 262 (corrigé à la fin du livre) : Graphique : .... II Masse du soleil : 1) Pour ...

Part of the document


Correction des exercices chapitre 12

Exercice n° 8 p 262 (corrigé à la fin du livre) :

a. Graphique :
Avant de tracer le graphe, il faut calculer et réunir dans le tableau (en
rajoutant deux colonnes) les valeurs de T² et de r3 :
|Satellite |Période T |Rayon r (×108 |T² (×1010s) |r3 (×1024 m) |
| |(×105s) |m) | | |
|Miranda |1.22 |1.30 |1.49 |2.20 |
|Ariel |2.18 |1.92 |4.75 |7.08 |
|Umbiel |3.58 |2.67 |12.82 |19.03 |
|Titania |7.53 |4.38 |56.70 |84.03 |
|Obéron |11.7 |5.86 |136.89 |201.23 |

Voici la courbe :








b. Cette courbe qui a la forme d'une droite indique que T² = cte × r3
d'où [pic] et on retrouve la 3ème loi de Kepler.
c. Pour démontrer cela il faut appliquer la 2ème loi de Newton à un
satellite d'Uranus, dans un référentiel centré sur le centre de cette
planète. Le système matériel considéré est un des satellites. La seule
force qui s'exerce est la force d'attraction gravitationnelle d'Uranus
sur le satellite FU/sat :
[pic]= m×[pic]
On projette sur les deux vecteurs de la base de Frenet :
On sait que la force étant radiale, l'accélération sera uniquement normale
d'où :
an = G×[pic](*)
On sait aussi que l'accélération normale a pour valeur v²/r et aussi que
la période de révolution du satellite autour d'Uranus a pour expression : T
= 2(r/v.
On remplace dans l'expression (*) an par v²/r puis v par 2(r/T et on
trouve :
[pic]
d. Pour faire ceci, on peut calculer le coefficient directeur de la
droite tracé ; celui-ci serait alors égal à la constante k =[pic].
Le coefficient directeur est égal à k = 6,80.10-15 SI d'où MU =
[pic]= 8.70*1025 kg





Exercice n°12 p 263 :

1) Calcul des forces :
a. Force exercée par le soleil sur la terre :
FS/T = [pic]
b. Force exercée par la lune sur la terre :
FL/T = [pic]
2) Force résultante maximale :






Dans cette configuration les deux forces s'ajoutent : F = 3.54*1022 N

3) Pour une force minimale :




Dans cette configuration les deux forces se soustraient : F = 3,50.1022N

4) Les forces gravitationnelles ont pour effet de créer les marées : les
marées océaniques mais aussi les marées terrestres.

Exercice n°19 p 265/266 :

I Loi de la gravitation universelle :
1) Etude de la trajectoire :
a. Le périphélie correspond au point sur l'ellipse où le corps céleste est
le plus proche de son axe attracteur, c'est à dire, d'après la loi des
aires, là où la vitesse est la plus élevée.
On regarde les dates pour lesquelles la vitesse est maximum, on
obtient :
05/02 ; 10/02 ; 15/02 1986
b. On prend les valeurs de v6 et v8 dans le tableau puis on calcule la
taille des vecteurs vitesses correspondants à l'aide de l'échelle.
c. Pour calculer l'accélération, il faut effectuer : [pic]. 10 jours étant
la durée qui sépare les dates t6 et t8.
Comme v8 = 5.401*104 m.s-1 et v6 = 5.413*104 m.s-1, on trouve a7 =
1.4*10-4 m.s-2.
Grâce à l'échelle, on calcul la grandeur du vecteur à tracer.

2) Approche théorique :
a. Force exercée par le soleil sur la comète :
[pic]
b. Il faut appliquer la 2ème loi des Newton à la comète dans le
référentiel héliocentrique :
mC×[pic][pic][pic]
Donc [pic]
c. Si r représente la distance de la comète au soleil, on peut mettre
cette accélération sous la forme
a = K×(1/r²) avec K = G×MS


3) Calculons a7 par l'expression littérale de I2b et la valeur de 1/r² du
tableau en C7:
[pic]1.7*10-2 m.s-2
On retrouve des valeurs similaires par le calcul et par la construction
graphique.


II Masse du soleil :
1) Pour calculer le coefficient directeur, on prend deux points de la
droite et on effectue différence des ordonnées divisé par différence des
abscisses. Donc ici :
K = [pic]
2) On sait que ce coefficient directeur a pour expression littérale K =
G×MS. D'où :
[pic]
Il y a bien accord entre cette valeur calculée et la valeur théorique.

Exercice n°20 p 266 :

1) Etude comparative de deux satellites :
V Le satellite S1 étant géostationnaire, sa période de révolution est
la même que la période de rotation propre de la terre. Donc oui, T1 =
24H
V Oui, si les satellites ne sont soumis qu'à la force gravitationnelle
exercée par la Terre, on peut en conclure que leur mouvement est
quasiment circulaire uniforme.
V Non, la vitesse d'un satellite ne dépend que de son altitude, plus il
sera éloigné du soleil, moins il aura de vitesse. En effet : [pic],
si h augmente, v diminue.
V Ayant la période de S2, nous pouvons calculer son altitude en
utilisant la 3ème loi de Kepler :
[pic] d'où r2 = [pic]
D'où h2 = r2 - RT = 2.6*104 - 6.4*103 = 2.0*104 Km = 2.0*107 m

2) Etude du mouvement d'un satellite :
V L'étude du mouvement d'un satellite doit se faire dans le référentiel
géocentrique, considéré comme galiléen. Dans ce référentiel, un
référentiel lié à la terre serait en mouvement circulaire uniforme,
il ne serait donc pas galiléen.
V Oui l'expression littérale de la force de gravitation que subit le
satellite est correcte.
V Non, les dénominateurs ne sont pas les altitudes mais les distances
entre les satellites et le centre de la Terre, il faut remplacer h1
et h2 par r1 = h1 + RT et h2 par r2 = h2 + RT

-----------------------


[pic]





[pic]

S

[pic]

S

























C

[pic]

L

T

[pic]

[pic]

S

L

T